
AD-Ai15i 961 SYSTEM DESIGN OF AUTOMATED VLSI (VERY LARGE SCALE1/
~INTEGRATED) TEST STATIO.. (U) AIR FORCE INST OF TECH

URIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. S TARIG

pUNCLASSIFIED DEC 84 AFIT/GE/EE/84D-27 F/6 9/5 L

1.

. III251.lill IIII Illll

MICROCOPY RESOLUTION TEST CHART

N-- I NA [1" f I WI

C

, ,C.

I . . . •. . , i l l l ~ ' l ' i l i i l il-- -

RFPHOIO[ICFD AT GOVERNMt-NT EXPENSE

0,

SYSTEM DESIGN OF AUTOMATED VLSI
TEST STATION AND IMPLEMENTATION

OF SELECTED SYSTEM ASPECTS

THESIS

> AFIT/GE/EE/84D-27 Saleem Tariq
0. Sqn.Ldr. PAF

This document hosbonapproved P
f tcr public release and sale; its A

,-02 di -tribution is unlimitcl .

DEPARTMENT OF THE AIR FORCE A
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

85 03 13 184

AFIT/GE/EE/84D-27

4m

SYSTEM DESIGN OF AUTOMATED VLSI
TEST STATION AND IMPLEMENTATION

OF SELECTED SYSTEM ASPECTS

THESIS

AFIT/GE/EE/84D-27 Saleem Tariq
Sqn.Ldr. PAF

Ad

Approved for release; distribution unlimited.

- r.-

AFIT/GE/EE/84D-27

SYSTEM DESIGN OF AUTOMATED VLSI

TEST STATION AND IMPLEMENTATION

OF SELECTED SYSTEM ASPECTS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillient of the

Requirements for the Degree of

Master of Science

Saleem Tariq, B.S.

Sqn. Ldr. PAF

Graduate Electrical Engineering

December 1984

Approved for public release; distribution unlimited.

Preface

This report is system design of a capability to test

VLSI circuits and implementation of two selected aspects

of the system design. I undertook the project because it

provided an opportunity for me to realize the major steps

and amount of work involved in setting up a VLSI test

station. Originally, I started this project with only its

hardware aspect in view. As the project developed, whole

effort was directed towards system design and program

development. This change of direction provided for me my

first experience to design a project with system outlook.

The system design has been partially implemented and it

0. is hoped that its implementation will be completed in

coming years to fit this Automated Test Station for VLSI

(ATV) in long term scheme of Design Automation curricula at

AFIT.

It is a pleasure to acknowledge my indebtedness to my

faculty advisor, Lt. Col. Hal Carter, who often gave me a

*free hand to achieve the objectives. He provided excellent

guidance at the beginning of this project while estab-

lishing the system requirements and was always willing to

provide help as the project developed.

Finally, I want to express my gratitude to my wife,

Beena, and daughter Mariam for their patience and under-

standing.

Tariq Saleem

* ii

IL

Page

Preface.........................ii

List of Figures......................v

List of Tables.....................vii

Aostract.......................viii

I. Introduction.........

Background.................1-3
Statement of Problem 1-4
Requirements................1-4

Functional Requirements.- 4
*Implementation Requirements . . . 1-6

Performance Requirements 1-7
Limitations................1-7
Scope...................1-7
General Approach 1-8

Inspection of Data 1-8
* Testing of lOUT 1-8

Organization.................1-9

* - II. System Design...........-

Overview........
.1 System Node List..............11-4

III. Detailed Design and Implementation of
Selected System Aspects -1

Extraction of Test Data from
* ESIM File -1

Process User's Input...........111-4

IV. Analysis....................IV-l

Test Plan (Extract Test Data
* ~~Function)..................IV-1

Identifying the Equivalence*
Classes..................IV-2
Test Results...............IV-2
Limitations...............IV-2

Page

VI. Conclusion VI-I

Conclusion............ .. vI-i
Recommendation VI-2
Afterthoughts VI-2

Bibliography BIB-I

Appendix A: System Design Node Diagrams &
Node Descriptions A-I

Appendix B: Node List, Node Diagrams &
Descriptions for Detailed Design
of "Extract Test Data" Function . . . B-I

Appendix C: Node List, Node Diagrams &
Descriptions for Detailed Design
of "Process Users' Input" Function C-i

Appendix D: Program Listing of "Extract Test
Data" Function D-I

Appendix E: Descriptio-i of "SIEVE" Data
Format E-1

Appendix F: Description of "ESIM-File"
Data Format F-i

Appendix G: Data Dictionary G-1

Appendix H: Users' Manual H-i

Vita Vita

iv

List of Figures

Figure Page

I-1 Automated Tester for VLSI (ATV) 1-2

11-1 Data Flow Diagram - ATV System 11-7

11-2 Functional Decomposition of ATV System . 11-8

A-1 Automated Tester for VLSI A-2

A-2 Automated Tester for VLSI Circuits (ATV) A-4

A-3 Extract Test Data................A-6

A-4 Read ESIM File................A-8

A-5 Tabulate Command Data.............A-10

A-6 Restructure Test Data.............A-12

A-7 Change Data Format..............A-14

A-8 Process Users' Input..............A-16

A-9 Classify Input................A-18

A-i0 Select Operating Option............A-20

A-li Setup Reference Tables............A-22

A-12 Validate Manual Data.............A-24

A-13 Apply Simulations................A-26

A-14 Process Test Data................A-28

A-15 PerfIorm Test....................-30

A-l6 Deduce Results................A-32

A-l7 Analyze Results................A-34

A-18 Handle Results.................A-36

B-1 Extract Test Data................B-4

B-2 Read ESIM-File.................B-6

V

Figure Page

B-3 Classify Textline B-8

B-4 Tabulate Command Data B-10

B-5 Check for Specific Command B-12

B-6 Tabulate Test Pins B-14

B-7 Generate Array of Output Pins B-16

B-8 Handle Remaining Commands B-18

B-9 Validate Command Line B-20

B-10 Restrucuture Test Data B-22

B-i Store Node Data B-24

B-12 Add Data in Associated Node-Buffer . . B-26

B-13 Change Data Structure B-28

B-14 Change Data Format B-30

C-I Process Users' Input C-4

C-2 Classify Input C-6

C-3 Select Operating OptionC-8

C-4 Select Mode C-10

C-5 Verify Mode C-12

C-6 Setup Options C-14

C-7 Setup Reference Table C-16

C-8 Select Appropriate Table C-18

C-9 Fill-In Reference Table C-20

C-10 Setup Input Pins' Table C-22

C-li Setup CLock Pins' Table C-24

C-12 Setup Pwr/Gnd Pins' Table C-26

C-13 Setup Output Pins' Table C-28

C-14 Validate Manual Data C-30

vi

List of Tables

Table Page

IV-l Equivalence Classes in Test Plan. IV-3

IV-2 Test Results..................V-5

vii

GE/EE/84D-27

Abstract

Automated Test Station for VLSI (ATV) is a system

design to ascertain correct functioning of a VLSI circuit.

It is intended to test an Integrated Circuit (VLSI) by

using Stanford IC Tester, (developed at Stanford Univer-

sity, California). The tester has the capability of

addressing, simulating, and measuring status of any pin of

its test connector, to which an ICUT (IC Under Test) is

attached.

The test vectors to simulate the ICUT and reference

data to analyze the response of an ICUT are extracted from

ESIM files in VAX-11/780 computer system and stored on 8" -

floppy disks to be utilized with microcomputer. These ESIM

files, typically produced during Computer Aided Design

phase of a VLSI circuit, contain node data generated during

its simulator run.

The LSI-1l/23 microcomputer will be used to control

the functions of IC tester and provide test and reference

data. The user will have the capability to guide the

course of operation by selecting various operating options

in an interactive manner.

viii

SYSTEM DESIGN OF AUTOMATED VLSI
TEST STATION AND IMPLEMENTATION

OF SELECTED SYSTEM ASPECTS

I. Introduction

7!i4 . ro ec, is the design of a capability to test VLSI

circuits at AFIT. The requirement of ascertaining the

correct functioning of a VLSI circuit is on the rise in

step with the increasing complexity of these circuits. An

inte;rated circuit is functionally tested by simulating it

with a known input sequence and then comparing its output

with a reference data sequence.

A VLSI Chip may consist of more than 100,000 coimponents O

organized in a number of complex functional stages between

tts input and output pins. Additionally, the number of

input and output pins may exceed a nominal value of 20, but

it entails simulation of VLSI with potentially over 8 million

test secuences.

This makes the manual mode of testing a VLSI circuit far

too lazorious, monotonous, and time consuming even to be con-

sllerd. Problems like VLSI simulation are well suited for

comouter application; however, a discrete judgment has yet to

be made to limit the number of test secuences necessary to

ascertain tne functioning of a circuit because the number of

test sequences increase experimentally with the increase in

I-i

S

0

the number of input pins. The simulation of a VLSI circuit

with 20 input pins, sampling its outputs and comparing it

with reference data, even if all three steps are completed

within incredible limit of one microsecond, could require

more then 150 days to exhaustively test one inch VSLI

circuit.

Exhaustive testing requires not only unnecessary but

most part of it unproductive efforts which can be eliminated

Dv selecting a specific set of input test sequences.

This specific set of test sequences will be obtained

from ESIM data files. These files are typically produced

durinr7 the layout phase of the VLSI circuits and consist of

input test data and resulting output data. These files are

procuced and available on the VAX 11/780 computer system

iA I T).

11CIit I J e >1 C ro- Test Results

, - r r ut ())1t er
1:1 Simulation

Vectors

St-anford

I>>' 'r
I C

. .c I-I: Autamat c i Tester for VLSI (ATV)

1-2

., this chapter consists of the
list consists of an indented index

. u .rs of all activity diagrams along with

in titles. Activity diagrams represent the

.,I rocesses in a system. The indentation serves

.. the system hierarchy. IRef. 16]

'Tn _ce ciaqrams and tiheir descriptions are attached as

e' " T'-, ata dictionary (Process Definitions and

a iow Definitions) has been attached as Appendix "G".

'Pfh Node List contains the names of all nodes whereas Node
p

: ----riptions describe function of each node in terms of its

,.'--'xodules. Process Definitions explain each node in terms

fts input and output. Data Flow Definitions provide all

......ion reqarding data, whici is passed from one node to

, , j --o List

'-' A-0: ATV - Automated Tester for VLSI circuits

A.: Lxt rct Test Data

r2od, AI: keac ;IlN File

No)e Al 11: Get Text Line

Sode A 112: Classify Text Line

, Al2: Tabulate Command Data

Nnn, Al2I: Check for Specific Command

!:: 1: Tabulate Test Pins

Al -: ano Ie RemU in i nq Comma no s

11-4

points to represent binary sequences. The system will

samri)e the output pins of ICUT after it has been simulated

by a test vector and compare these output values with

reference Iata - which is available from ESIM-file in "Auto"

mode of operation only. The system wilh translate this

"comparison" into appropriate test-messages. The sub-system

(b) will operate independent of sub-system (a) and will be

completely implemented on microcomputer LSI-1l/23.

Both Sub-Systems were designed using structured Analysis

Diagram Technique (SADTs). SADT is a comprehensive

methodology for performing functional analysis and system

design. It comprises of a number of coherent, integrated

set of methods and rules that constitute a disciplined

a:)roach to analysis and design. [Ref. 16]

Technical details regarding symbolic representation and

:nottion of SADTs are well documented in Ref. 3 and Ref. 16.

The structured design methodology was selected because

enables the whole system to be sub-divided into modules

with definite and well-defined interfaces [Ref. 1, 8]. This

;r:e of design allows defining each module and its

- in terms of input and output parameters.

Thie VLSI tester is composed of two major functional

groups as snown in Figure 11-2. Each group is further

exoarndG, In stages, into its sub-modules to provide more

r:-h f i siqn. Each successive level gives more

;nforcaticir resardinq how an input is being transformed into

1n-3

file, will scan the given file and will classify the IC pins

(test nodes) into three different categories of input, clock

and output pins. The sub-system will dedicate memory

buffers and store test data for each node into its

respective buffer. The sub-system will finally change

the available node data into test vector format, and write

out these vectors into an external file. The "test vectors

file" will be trasnferred on to an 8" floppy disk in RT-11

Operating System Data format.

The sub-system (a) will be implemented on VAX-11/780

computer system as the ESIM files are located in that

system. This is also favored by the consideration that

LSI-11/23 microcomputer has limited (256 kbytes) memory.

P This will allow the microcomputer memory to be utilized S

exclusively for sub-system (b).

The sub-system (b), testing of the ICUT, will revolve

around a user-friendly interface. The user will be prompted

to select a specific mode of operation from the system menus

which will be offered at each step of operation. The system

will prompt the user to input information regarding size,

pan-' Pin es-qnations of the ICUT. It will tnen

es-tablish cross-reference between ICUT pin numbers ana thtelr

pnysical location on the Stanford IC tester. [)uri no

simulation of the ICUT, the system will translatL- th t, <t

vector bits from ICUT pin-numbers into their r2'.: :>:1

location on IC tester and provide hih/low'::>,:,

11-2

p.
]1

II. System Design

Overview

The Automated Tester for VLSI circuits (ATV) was

basically analyzed using Data Flow Diagrams (Fig. II-1). A

data flow diagram is a graphical technique that depicts in-

formation flow and the transforms that are applied as data

move from input to output [Ref. 2, 98-104]. The physical

discontinuity in the system data flow made it logical to

sub-divide the overall plan into two sub-systems.

a) Extraction of Test Data from ESIM Files

b) Testing of ICUT (IC Under Test)

The functional requirements of the system, provide the

user with an option to operate in "Auto" or "Manual" mode.

Ope'ation in "Auto" mode entails that respective ESIM file

exists from which test data to simulate the ICUT can be

extracted. ESIM files are typically produced during design

phase (CAD) of a particular VLSI circuit and contain infor-

mation regarding node designations and changes in their

status values (high or low) during a simulation run. A S

t crical IXIM file, showing its data format and commands, is

;n Appendix "F". The extraction of test data from

LSIM file will oe achieved by realizing the sub-system (a).

In "Manual" mode of operation, the user will input the

, vctors through the keyboard to simulate the ICUT.

Trie sub-svstem (a) , Extraction of Test Data from ESIM

11-1

S,

4-

0

j'-I

11-8)

I0

pcw

4-i4

w

U -)

oo

"a U):
P4 ~Q)<

C~06C

al E-

/o ca

W4-JJ

(3 4-J

4-j-

co w wn4

wc m

aa

coJ

a)a JC jC /

1~~-. 11-7

The most important aspects of the thesis have been, to

outline the overall system requirements (Chapter I),

System Design (Chapter II), and Analysis (Chapter V).

Chapters III and IV consist of detailed design and

implementation of two selected functions of the system:

"Extract Test Data" and "Process Users' Input". These

functions were selected in consultation with thesis advisor,

from the complete system design for further elaboration.

Chapter V describes a test plan, which was used

to test Extract Test Data function, the implemented part of

system design. The remaining part of this chapter analyzes

the test results.

Chapter VI summarizes the overall work and contains

some recommendations for future work in this field.

0-10

application of test data to simulate ICUT, sampling the

monitored pins for the output results and comparing these

output values with the available reference data to ascertain

proper functioning of ICUT.

This part of the system will be implemented on an LSI

11/23 microcomputer. The software developed in this part

will reside on floppy disks operable under an RT-11 Operating

System.

The ESIM files for a particular VLSI circuit consist of

pin-designations of monitored IC-pins, initialization

vectors, clocking sequences, test inputs and corresponding

output vectors.

The VLSI circuit will be simulated either from test

files or from data entered through LSI 11/23 keyboard in an

interactive manner. After initialization of IC tester and

the ICUT, each test vector will be applied to IC under

test and resulting output will be compared with the given

reference vector to ascertain proper functioning of the

VLSI circuit.

Organization

This report is organized in six chapters: I) Intro-

duction, II) System Design, III) Detailed Design of

Selected System Aspects, IV) Implementation of Selected

Aspects, V) Analysis, and VI) Conclusion.

1-9

, -. -i " , "

(iii) Specification, design, and implementation of

menu drivers that will enable the user to interact with

the system in a user friendly manner, and,

(iv) Specification, design, and implementation of a

program to convert ESIM files produced on a VAX 11/780

computer system into a compatible form for the micro-

computer running RT-1I Operating System.

General Approach

The tester system will be controlled by an LSI 11/23

microcomputer with 256 Kbytes of memory. In order to

optionally use the limited memory resources of a micro-

computer, the basic plan is sub-divided in two parts:

(a) Extraction of Test Data.

This part of the system will scan ESIM files,

segregate pertinent test data and then restructure it for

subsequent handling by the microcomputer system. This soft-

ware program will be implemented on a VAX-11/780 computer

system. This preprocessing of data on the VAX system would

make better use of microcomputer memory available for IC

testing programs. The conversion of these data files to

RT-11 format will be carried out under a system program

available in the UNIX-library.

(b) Testing of ICUT.

Testing of a VLSI circuit includes getting data from the

user and the disk, initialization of IC tester and the ICUT,

1-8

.S

computer driving a hard-wired tester (Stanford IC Tester).

(ii) The ESIM files shall be available on 8" floppy

disks in RT-11 Operating System format for use as

input files to the tester system.

(iii) Where practical all the software shall be

written in the "C" language. The program modules required to

be written in "Assembly Language" shall be adequately

documented and kept to a minimum.

(iv) The power for the IC tester shall be delivered

through the microcomputer chassis.

Performance Requirements

(i) The system software shall not limit the testing

capabilities of the Stanford IC Tester.

Limitations

(i) In reference to Functional Requirement iv(b)

[Auto Subset Tests], the user has the total responsibility

for integrity of test results if out-of-sequence test

instructions are run without proper intializations of ICUT.

Scope

The scope of this thesis will be limited to:

(i) Design of the tester system at system level using

top-down modular concepts,

(ii) The specification and design of a system con-

troller that will control the microcomputer testing software,

1-7

mlII - .0

output pins of the ICUT and provide power and ground con-

nections to the IC as specified for the test program.

(c) During the third phase (SIMULATION), the

system shall read input data vectors from disk and apply

them to ICUT in real time. The outputs from the ICUT will be

stored in memory and/or on the disk; these results will be

compared with pre-stored vectors for fault detection and

possibly fault diagnosis.

(vii) The system shall have the following responses

for depicting results of a test-run:

(a) It shall display "TEST COMPLETED" in case of

successful completion of a test program for an ICUT in

"AUTO" mode.

(b) It shall specify the particular input sequence,

signal names, and bad pins of the ICUT in case of detecting a

fault in "AUTO" mode.

(c) The system shall display the input and output

vectors during single-step simulation in "MANUAL" mode.

(viii) The inputs and outputs from the ICUT shall be

available for visual inspections on an oscilloscope.

(ix) The input simulation data for any particular

ICUT shall be obtained from ESIM-simulator runs performed on

any computer system at AFIT (primarily a VAX 11/780).

Implementation Requirements

(i) The system shall consist of a LSI 11/23 micro-

1-6

• -.: - . . i- _ - . -., - . S

(b) The user shall have the ability to run any

set or subset of test instructions.

(c) As a user option, the tester will stop the

test either at detecting the first fault or only at the end

of the entire test after recording all encountered faults.

(v) The "MANUAL" mode will permit static analysis

of the ICUT and shall provide the following options:

(a) The user shall have the ability to manually

change the status of any pin of ICUT from low to high and

vice versa between any two clock periods.

(b) The user shall have the ability to address

individual pins of the ICUT, designate them as input, out-

put, power or clocking pins and provide specific input

0C vectors for simulation of ICUT in single step operation.

(vi) A test run for an ICUT shall consist of the

following phases:

(a) During the first phase (GATHER-DATA),

pertinent information regarding ICUT, i.e., its specifica-

tions, name of test data file, number of pins and their

designations and IC-initialization data will be collected

and cross reference tables will be generated as a prepara-

tory step to simulate ICUT. This data will be received from

user through a user friendly interactive system program.

(b) During the second phase (INITIALIZATION), the

system shall initialize the tester, establish the input and

1-5

iS

Statement of Problem

The whole project involves developing the hardware

interface between the IC tester and a microcomputer, and

developing software program which will deduce test

sequences from ESIM data files and use them to test VLSI

circuits.

Requirements

The requirements for the system are grouped in the

following three categories:

(1) Functional Requirements

(2) Implementational Requirements

(3) Performance Requirements

Functional Requirements

(i) The system shall operate and test all ICs within

the capabilities of the Stanford IC Tester.

(ii) The system shall be operable through a user

friendly menu.

(iii) The system, upon initial start-up, shall give

the user an option to operate in "AUTO" or "MANUAL" mode.

(iv) The "AUTO" mode shall provide following sub-

options:

(a) The user shall have the ability to run the

test program for an IC Under Test (henceforth abbreviated

as ICUT) without interruption.

1-4

.-

The basic plan of this project is to attach a single-

board IC tester developed at Stanford University to a

microcomputer and to control the functions of the IC

tester with this microcomputer.

Background

This project is an important step toward achieving the

AFIT's overall plan for Digital Systems Design Automation.

The goal of the AFIT plan has been to take advantage of the

rapidly changing field of Design Automation since the future

of this field will have a major impact on the future of

military technology (Ref. 15).

AFIT has developed a number of operational tools to

support its projects and "VLSI design courses". AFIT
(0

students have successfully designed a number of "VLSI-

Chips" during the past years. These VLSI circuits,

after being fabricated, require a simulation test to verify

their functional operation. This step was previously done

manually, which was far too laborious, monotonous, and often

inaccurate.

A tester to simulate the input pins of any Digital

Circuit and measure the resultant response at its designated

output pins was developed at Stanford University, California

(henceforth known as Stanford IC Tester). The overall aim

is to utilize Stanford IC Tester, controlled by a microcom-

puter, to test fabricated VLSI circuits designed at AFIT.

1-3

0--

Node A13: Restructure Test Data

Node A131: Store Node Data

Node A132: Change Data Structure

Node A133: Append2 File

Node A14: Change Data Format

Node A2: Process User's Input

Node A21: Classify Input

Node A211: Get Keyboard Input

Node A212: Verify Keyboard Input

Node A22: Select Operating Options

Node A221: Select Mode

Node A222: Verify Mode

Node A223: Setup Options

Node A23: Setup Reference Tables

Node A231: Select Appropriate Pin-Table

Node A232: Fill-In Reference Table

Node A233: Setup Input Pin TAble

Node A234: Setup Clock Pin Table

Node A235: Setup Power/Ground Pin Table

Node A236: Setup Output Pin Table

Node A24: Validate Manual Data

Node A241: Check Overlap with Output

Pins

Node A242: Check Overlap with

Power/Ground Pins

Node A3: Apply Simulations

I1-5

Node A31: Process Test Data

Node A311: Segregate Reference Data

Node A312: Correlate Tester-Pins & Manual

Data

Node A313: Correlate Tester-Pins & File

Data

Node A314: Convert Test Data to SIEVE

Format

Node A32: Perform Test

Node A321: Initialize Tester

Node A322: Initialize ICUT

Node A323: Simulate ICUT

Node A324: Sample ICUT Output

Node A4: Deduce Results

Node A41: Analyze Results

Node A411: Convert Sample Data into

IC Pin Domain

Node A412: Compare Sample Data &

Reference Data

Node A42: Handle Results

Node A421: Formulate Test Report

Node A422: Generate Storage Buffer

Node A423: Copy Buffer to Disk

Node A424: Display Test Report

11-6

III. Detailed Design of Selected System Aspects

During the preliminary design of Automated Tester for

VLSI (ATV), the system was split up into four functional

groups as shown in Figure A-2.

These groups are:

i) Extract Test Data

ii) Process Users' Input

iii) Apply Simulation

iv) Deduce Results

The detailed design of the first two groups was under-

taken as a part of this thesis. The design of the remaining

two groups is left for future development.

Extraction of Test Data from ESIM Files

As described earlier in Chapter II, ESIM files are

typically produced during design (CAD) phase of a particular

VLSI circuit. These files contain information regarding

node designations of a circuit and voltage changes sensed at

each node during simulation runs of the VLSI circuit. A

typical ESIM file, showing its various commands and data

format is placed in Appendix "F".

The function "Extract Test Data" scans a given ESIM file

to generate arrays of all monitored pins, input pins and

clock pin of a VLSI circuit by interpreting various ESIM

commands. A detailed description of all ESIM commands is

included in Appendix "F". The ETD function sets up

II1-1

cross-reference between the three arrays (i.e., arrays of

"I monitored pins, input pins and clock pins) and creates an

array of output pins from those elements of monitored-

pins-array which do not have a cross-reference with arrays

of input or clock pins.

The ETD function gathers only pertinent data which is

essential for testing a VLSI circuit. This is achieved

by activating ETD-function on following, ESIM commands only:

w: list of monitored pins

v: an input node with its respective data vector

k: list of clock pins along with their respective

clocking sequence.

I: Initialize ... this is used to establish a

* cross-reference between array of monitored pins

and arrays of input and clock pins. This

command is also used to generate array of

0 output pins.

h/l: These commands can change the status of the

effected pins. These commands are validated by

checking that no output pin is forced to hold

a permanently "high/low" voltage status.

These commands by holding certain pin to high

or low status effect the number of input pins

and hence a change in input test vectors. This

second part of "h/l" command has not been

implemented as yet.

111-2

. .. S

The ETD function generates buffers in memory; each

buffer being associated with one particular monitored pin.

The function reads node vectors from the given ESIM file

and adds it into its respective buffers. If the amount of

data exceeds capacity of a buffer, ETD function generates an

overflow signal. The overflow signal activates a

sub-routine to change the format of available node data into

test vectors. These test vectors are written out into an

external file that makes the buffers available for any more

incoming node data from ESIM file. The change in data

format is achieved by visualizing a matrix of ordered input

pins (each element being their respective node buffer), and

transposing the matrix to generate test vectors.

* ' The ETD function is independent of all other functions

and is implemented on VAX-11/780 computer system because all

ESIM files are available in that system. This function was

considered at system level as narrated in descriptions of

Node Al and its associated child nodes in Chapter II. The

preliminary design was expanded to greater depths using SADT

diagrams until implementation level.

The system design has been included again in this

software phase of detailed design to produce a complete and

independent outlook at ETD function.

The node list, node diagrams of the detailed design and

their descriptions are attached as Appendix "B". The

detailed design was translated into program by use of "C"

111-3

language. The program listing of ETD function are attached

as Appendix "D". The Data Dictionary (Process Definitions

and Data Flow Definitions) is included in Appendix "G".

Process Users' Input (PUI)

This function "Process Users Input" actually describes

an interactive system interface. The PUI-function prompts

the user to select a specific mode of operation from a

variety of options (narrated in description of Node A22).

For "Auto" mode selection, the PUI function prompts for the

name of test data file; it then checks the availability of

the given file and for unsuccessful access to the given

file, PUI-function changes the mode of operation to "Manual"

and informs the user to this effect.

The PUI function asks the user to input information

regarding size, shape and pin-designations of the ICUT. For

specific shapes and sizes, there are pre-stored tables which

correlate the IC pin-numbers to their respective location on

Stanford IC tester. The PUI selects the appropriate table

and prompts the user to fill in data for all pins, i.e.,

pin-designations and their class (input, output, clock,

power ground, don't care, etc.). The PUI function finally

validates input-test vectors in case of "Manual" mode of

operation by checking that number of bits do not exceed the

number of input pins and no designated output/power or

ground pin is included as an input pin.

111-4

This function was considered at system level as narrated

in the description of Node A2 and its associated child nodes

in Chapter II. The system design has been expanded using

SADT diagrams to show implementation. This function was

translated by use of "C" language and has been partly

implemented on LSI-11/23 microcomputer.

The node list, node diagrams of the detailed design and

their descriptions are attached as Appendix "C". The Data

Dictionary (Process Definitions and Data Flow Definitions)

is included in Appendex "G".

111-

1 11-5

IV. Analysis

Test Plan (ETD)

The function "Extract Test Data", like the overall system

was designed in top-down manner in accordance with the

principles of stepwise refinement which ensured proper inte-

gration during later stage of development cycle.

The testing of the ETD function was conducted in two

phases. During the first phase, diagnostic testing (to

verify correctness of each module) was done mostly by

inserting "print-statements". During the second phase, after

integration of all modules, a test plan was devised using

"equivalence partitioning" technique. [Ref. 4, 44-55]

0 * The primary objective of the test plan was to define a

combination of test data that had the highest probability of

uncovering errors. "equivalence partitioning" strives to

define a test case that uncovers a class of errors that might

otherwise require the execution of many test cases before the

general error could be observed. This approach greatly

reduces the total number of test cases that must be

aeveloped.

Statistics have shown that many software errors occur

just below, at, or just above the bounding value of indices,

data structures and scaler values, and test cases that

exercise this domain have a high probability for uncovering

errors. [Ref. 2, 289-309]. The test plan was devised using

IV-i

"Boundry Value Analysis" in conjunction with "Equivalence

Partitioning".

This test plan was implemented to check correctness of

the overall function (ETD). A basic assumption was made

right at the beginning that the user would input the name

of a valid ESIM-file, otherwise ETD would try to process

the given file and produce "un-intelligent" results.

Identifying the Equivalence Classes

The equivalence classes were identified as listed in

Table IV-l. Each external condition represents a class of

input data, which was further segregated into sub-class of

valid and invalid data-sets. Test cases covering one or more

than one valid equivalence classes and one test case for each

invalid equivalence class were written down. These test

cases were used to evaluate the performance of ETD function.

Test Results

All test cases and cooresponding responses of ETD

function are listed in TAble IV-2. ETD function performs as

per specification within its scope of implementation.

Lirmitations

ETD function presently has following limitations which,

if removed, would greatly enhance the generality of this

function,

i) implementation of "h" and "1" commands

(ii) implementation of "-w" (unwatch) command.

IV-2

U)

C) 410 -

M) C) 4- ,1)

:C') r4 -4 o ,j l)' 1 r- m)C)

0 X Z:C () 4.) w o - 14 4 -1

n)~' C - 2 E) E -A

-D mX~ C z) U) r13 (D > -0C D 0C

> --IJ4 4 ~ N 4 4N 4 N
*H --4 0 = H Q)H - C) a) 0)

CN LL. z zCT 0-) NA N A N -A

L) M4

(n 4-J -

.4-1 C)0
- UO U) -

U C) .- I "-

U) wH
C) U) -4

uD 1- -- M) C)l
a)

> -4
M

a'C

Lf0
73 Q)

m >

-4C) C' >1 -

Q) E' 4J ~ '4 -4Ln 0

C')Z 0 >

-4 Vc a ~C) C)
:3 *.4 H) M')C) C:

-- 4 --1 4 N 0 0 0
I .14)C' Q) 0 -H-

> EI) A A A

C)

C) -

- U -4 0 413

3--4 4--10

IC 4 :)1- 3 1

0-H 0 0 0
-4 041 0 ~ 4

-4 C) 0 .0 .0

Ef E N E Ef
ro) m' m) H 3 0

2: 2: U) U) Z 2:

N ID

IV- 3

4-)

(CN(

(-U

'4-4

:5D

(Cc

'-4 U4

Table IV-2: Test Results (lT?)]f 3>)

Test Case

1. Valid ESIM File, Valid LTD fu.ci
Nante (1, 5, 8) MoUe d t 7:.: N §

and conver ,
and refe er rc< ,
expected. (eT , :

2. File Does Not Exist (2) ETD stores executcr,
giving a messaqe that "it
Is Unable to Open the
Said File"

3. File Exists But Does Not Produces Unintelligent
Contain ESIM Data (3) Results

4. No File Name is inputted ETD Does Not React, It
in Response to System Waits for another input
Prompt (CR is Pressed) (4)

:. Invalid Name (7) Control ETD stops execution after
Character giving a message that "it

is unable to Open the
Said File"

6. File is Empty (9) ETD produces expected
results with number of
input, clock pin an, out-
put pins being zero.

7. Relatively Small File (10) ETD produces expected
results as shown on
Page IV-8.

.'Vrv.>zr:e File (11]) FT fumct .c.. cr:&c~a s

noa rC:QC:o v S:

ano_ reference, vecto rs as
ex-nect oh.

C. ;unn~of Mont tored Pins LTD function seoresates
,ne (12) node data from ESIM files
and converts it into test
and rernrc vectors as
eect.(See Paqe IV-)

IV-5

. 1, . . U,-5P t Results (ETD) (Pace 2 of 3)

. . n:.1 n1 Cd P :.s ETD produces an output
file with zero output
pins and no output
vectors (See Page IV-9)

. : .. r K- . V t, Pins The program crashes
4, i4i civinc an error mef ssL 7e -."Asewmentation fault". i

!": :ut- Pins (15) ETD function segregates
> ,node data from ESIM files

and converts it into test
and reference vectors as
expected. (See Page IV-8)

.f Inut Pins (16) ETD produces an output
file with number of input
pins (zero) and no input
vectors (example of such
an input and output file
is shown on Page IV-10
and IV-11 respectively.)

i-. i oCr f Inout Pins (17) The program crashes
giving an error messaqe

seq ,, n.tion fault".

• .. f $out Pins (18) ETD function segregates

> , re node data from LSIM, file
and converts it into test
and reference vectors as
expected. (See Page
IV-8).

i.. .u.'.-y & futrut P'in's (19) L I : Frn uc.yF an output
", :-: file v..ith zero outout

pins anc no output
vectors.)L::an l of
iucn an input a:-,c output
f i - shown on Pace p
IV-12.)

.f CZu . .P ns (20) e procranm crasnes
> (cainc an error messace

taior. u"

II

Taiio~I- IV-? Tes D~ ls(T (Pace 3 of 3)

>-~onar~d(22)LTD cive s an error
L~~± P in Bin messaqe that effected
an nuru pin j~ is an output pin

anu resoective comrcanc
is invalid - but it
continues -witn e .:e cu -
tion of rest of the
pr oqr ar-,.

0- -,a E :eceo (23)
7, -,-'ue inc ar

-!-Com-oe (24 Presently a limitation
F;LausCf Ef'f ect-ed P)i1n not ir-np:ierentec .

o1 oi nrIa n ta n-c (25) S

ir. S'us of Effected-- P In

~. U pond(26)

N umnner or (27)

o; a S

cz a)

>) E

C

C". <

4-I cu
- C

71 7:

<cC

NODE AO: Automated Tester for VLSI Circuits (ATV)

Abstract

This is the entire system, decomposed into four major
functions: Extract Test Data, Process User's Input, Apply
Simulations and Deduce Results.

The Tester System (ATV)

The tester system has been sub-divided into four major
functions as shown in Fig. A-2. These functions are:

(i) Extract Test Data: This function scans ESIM
file for pertinent test data, segregates test data and
restructures the available node data into test vector form
for subsequent ease of application. This function is
implemented in VAX system where all ESIM files reside.

(ii) Process User's Input: This function prompts the
user to select from different operating options: Auto/Man-
ual mode with/without storing test results into a disk
file; to input all the testing parameters: name of
respective test file in Auto mode, size of IC, its
pin-designations and initialization and test data in Manual
mode. This function checks the syntax of data received
from keyboard and classifies the valid input by setting
various flags pertaining to user's operating options.

(iii) Apply Simulations: This function receives test
data from keyboard in Manual mode of operation and from
test file in Auto mode of operation. It translates test
data from IC pin numbers domain to their physical location
on tester. This function converts the test data into
"SIEVE" format which is particularly required for
simulation of Stanford IC Tester.Details of "SIEVE" format
are attached as Appendix "E". This function also applies
physical "high/low" voltage levels corresponding to a test
vector to simulate an ICUT, and samples the tester for
resultant output.

(iv) Deduce Results: This function translates the
resultant output of IC tester into IC pin numbers domain
and compares it with reference data for any inconsistency.
This function generates the final test result report from
successful/unsuccessful completion of test and pre-stored
messages. These test results can be directed to a terminal
and/or to a storage file for later consumption as opted by
the user.

A-3

4-1 -i

4-4JJ

a) <

4-1I

U) 4- b

-'-44

A-24

--- - - - - - - - - - - - - - - - - - - -- .

Appendix "A"
I

System Node Descriptions

NODE A-0: Automated Tester for VLSI (ATV)

Abstra-t

This is the environment node.

ATV-Automated Tester For VLSI

The whole system as shown in Figure A-i is sub-divided
into its two major parts:

(a) extraction of test data
(b) testing of an ICUT (IC Under Test)

The extraction includes reading only pertinent data
from the ESIM file and restructuring it from available node
data into test vectors for subsequent use; and testing of
the ICUT includes simulation of tester by input vectors,
detection of tester output, comparison of tester output
with the reference data, deduction of results and
formulation of test reports in regard to functional
capabilities of an ICUT.

Both sub-systems will be implemented in separate
environments. The ESIM Files, from which test data has to
be extracted, reside in VAX-1l/780 system and therefore,
software to handle the "data extraction" function will
also reside in VAX system. The output of this function
"Test Data File" will be available in RT-11 Format on 8"
FLoppy disk.

The testing of an ICUT function will be implemented on
LSI 11/23 microcomputer which will be used to control the
Stanford IC Tester.

At this level, the external input and output as shown
in Fig. A-4 are ESIM file, Keyboard input and test
results. ESIM files are typically simulator runs for a
VLSI IC during its design phase and provide necessary test
data to test an IC in "Auto" mode of operation. Keyboard
input comprises of all information in respect of IC, its
nomenclature, size, name of respective test file, pin
designations, mode of operation and testing vectors for
"Manual" mode of operation. Test results comprise of
information regarding any non-conformity of tester output
and reference data and GO/NOGO information for
successful/unsuccessful completion of a test. These test
results can be directed to a video terminal and/or to a
file for storage as opted by the user.

A-1

13. Scharer, Laura. "Pinpointing Requirements",
Datamation, (pp. 139-151), April 1981.

14. Niederhauser, J. Richard. Digital Logic Simulator, MS
Thesis, Wright-Patterson AFB, Ohio. Air Force
Institute of Technology, December 1971 (AD 736827).

15. Carter, Harold W. "A Plan for Digital System Design
Automation at the Air Force Institute of Technology,"
Planning Document, Department of Electrical
Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, November 1981.

BIB-2

Bibliography

1. Peter, Lawrence J. Software Desian: Methods &
Technicues, New York: Yourdin Press, 1981.

2. Pressman, Roger S. Software Engineering: A
Practitioner's Approach, New York: McGraw-Hill Book
Company, 1982.

3. Softech, Inc., "An Introduction to Structured Analysis
and Design Technique" (Softech Document #9022-78)

November 1976.

4. Myers, G. The Art of Software Testing, New York:

Wiley, 1979.

5. Kernighan, Brian W. & Ritchie, Dennis M. The C

Prograjuming Language, Englewood Cliffs, New Jersey:
Prentice-Hall, Inc. 1978.

6. Kochan, Stephen G. Programming in C, New Jersey:

Hayden Book Company, Inc. 1983.

7. Plum, Thomas. Learning to Program in C, Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1983.

8. Peter, Lawrence J. "Software Representation and

Composition Techniques", Proceedings of the IEEE, Vol.
68, No. 9, September 1980.

9. Wirth, Niklaus. "Program Development by Stepwise

Refinement" Communications of the ACM, Vol. 14, No. 4,

April 1971 (PP221-226).

10. Reifer, Donald J. & Trattner, Stephen. Software
Specification Technioues: A Tutorial.

11. Ross, Douglas T. "Structured Analysis (SA): A
Language for Communicating Ideas", IEEE Transactions,
Vol. SE-3, No. 1, (pp. 16-34), January 1977.

12. Ross, Douglas T. and Schomanji, K. E. "Structured
Analysis for Requirement Definition",

IEEE

Transactions, Vol. SE-3, No. 1, (pp. 6-15), January
1977.

BIB-I

I

minimal set of reference data from a known functional VLSI

circuit to test more circuits of that kind. It would be

even better if same thought is extended to Digital PCBs and

a Reference Test Data Library is set up. This test station

could be a valuable in-house capability at AFIT.

V-3

.. ... 4......i .. , - - - _ _ ,

S/

(iii) A prototype system interface (although a

little wild!) is in operation which sorts out a part of

basic preliminaries to set up test pre-requisites.

This is the present day situation. Stanford IC tester

has not been received as yet. It should be procured at its

earliest, and its capabilities be tested for best utiliza-

tion. A clear perception about the capabilities of this

IC tester would help in achieving an efficient system as

the aetailed design and implementation of "actual testing

of the ICUT" is yet to be developed.

Recommendations

Following are the recommendations for follow-on thesis

work on Automated Tester for VLSI.

(i) Efforts should be directed towards creating

a communication protocal and hardware interface between

LSI-11/23 microcomputer and Stanford IC tester.

(ii) Another thesis project should be undertaken

for expansion of prototype system interface to make it

comprehensive and user friendlier. The effort should also

be directed towards effecting conversion of test vectors to

SIEVE format.

0 Afterthought

It will be difficult to test those VLSI circuits which

were not created at AFIT, or for which respective ESIM

0 files do not exist. Research can be aimed at generating

V-2

0

V. Conclusion

This thesis work consists of a system design of an

Automated Tester for VLSI circuits (ATV) and implementation

of selected system aspects. The design outlines the

testing of an ICUT (IC Under Test) to be carried out in

three distinct steps.

(i) Extraction of test data from its respective

ESIM file in VAX-11/780 system by using ETD program.

(ii) Converting data format of extrac-ed test

data file from VAX-Computer System into RT-11 data format

and transferring it on 8" floppy disk. This function is

available in an UNIX-System library and is achieved by

* e getting assistance from computer room staff.

(iii) Actual testing of the ICUT on Stanford IC

tester controlled by LSI 11/23 microcomputer in an

interactive mode.

At present, the following has been achieved:

(i) First step, extraction of test data from

ESIM files (with some limitations), has been successfully

implemented.

(ii) Second function was aprior available

through system library. Same was successfully utilized to

change the data format of "extracted test data files" and

transfer them on to an 8" floppy disk in RT-11 data

format.

V-1

71

Input and ETD Response for Test Case (19)

w cock ser-a _ in word_mark wO wi w" w3 tZ t! t2 t3 t4 tE5 reset
V Cock 0200000000

V ser ia1 - 0 1 01 1701 :n.oi 101:001 IZZI
V word-asr k 000,'00Ut00000000011IJZI

V wl 00000fk: 1 1 1 1 1 0001
V w! oooooraiiiioooutyr
V w2 000000:I 1 11 10000U1
V W:Z0 ZZ 00010121111100001
V t: ozcroofl:1111700f17 1

v t - arGToir ill 1 11' I

V : 00U00Qti111001

V t5 00200(2il 1 110 (f11
V reset, 11 00000000

4:,OZ: Ioo iuc I : 0; Z: :ser ia' i in
'0000:OG I1003000'22 00' :word--nark
>000000 J000 :00(00 wo
0000002000 110 00000k'M" w 1

000000000C t00o000w

000000000C J000000': t I

0U000000Jj0 0G0I700001: t3
00150070030000002:t4

00X;000000000000--000017: t5
1 100300 0000000:reset

pui-ea jp transistors(12)

TINPIN 14 Cocck ser al _ T word_mark wE wi w2 w2 tO ti t2 t3 t4 tE reset
0L:IP :N IT

* 00 00 00 0 01 1 0

S0f0000 U000,

1 0

0> 1 0 0 y 1

0 :

ETD Response for Test Case (16)

I N uJ
c~ock ser-al _ T word-mark wZ wl w2 w3 tZ ti t2 t3 t4 tS

z I0000000ojo~z 1 0

ZOOM00 000 1 0

0100 roooofoo1 0

liz 1000100000 1 0
00000000001 0

100000OZO000 1 0

110000000000z 1 0

0000000000 I 0
1000100000 1 0

0100000000000lojo 1 0

0DOlxooooo 1 0
00000000001 0

10000000000009 1 0

01000110000000 1 0

I 0O110000000 1 0
111 i0000000000oz 1 0
1000000000000zz 1 0

110000000000 11

Input for Test Case (16)

w c-ock ser'al _in word_mark wZ wi w2 w3 tZ ti t' t3 t4 tE
fret

456 transistors. 220 nodes 10 pulled up)
nitil :aon took %35 steps

:S=: t-t=X=X X :2=X :I=X tD=X w2=X w2=" wl=X' wO=X word-mark=X sen ia" _ n=X
:1 ock=X
n inputs;: Vdd gnd
1 inputs: 0110 voc reset
:5=0f :4=0 t]=0 t-2=9 tl=0g t009 w20 w2=Z wl>0 w0D=0 word-markl1 serla7_ inl1
:1 ock =1
n inputs-: tdJd gnd c'ock ser-al _in word-mark
1 inputs: 6110 ucc reset
*0LT 21 f :10131010::f clock

:02020>isou00000:1 wordrma r k

00000200 0- 10O0zk000GM1: w IC 00000202150020000 w2
0000000006002BO001000: w3

00002200110020000 :t 1
000000002C U0000200000 : t2
0Z200200000v 000000000: t3
0010000JO0002200000kf: t4
00022Z0r 02O000260000 : tE5

* :< 4= :=0 -- 0= 7-._-0 tZ0 w2=0 w20Z w0=J w00 word-rnarkl1 seria' inI1
:1 ock=1
n inputs;: Vdd gnci c-ock ser'al _in wordmark

inp uts: . ND vdd reset
-56 transist ors. 220 nodes 0Z pulled up)
n k2 k3
0O1091ff1Z101U0011::c lock
0Z!jDIIZ:O:IZ01iOZa::seria', _in

00000:00J002001:wordmr

00Z0000002 900000001U: W I
000020 0000 00000kfZ0000: w2

00O000 0c02 0000000 : tO

02002200 00000000 t I
*ffZZ'_9G 000202200000220001;: t 4

000002T,(ZC 006 00020000f t t5
Pul-ed up transi~tors(12)

0

IV -10

Input and LTD Response for Test Case (10)

c ock 01E:01010!2:.fZ100Z:

V~ ~ vi C021110 0(1 I1

V j JO CoOO:11: I 2I0(81l'W
t C c.,000 : 111 CCCVL 1

02oic 00 1 :10001
oc eu: ::: 001,

1-.& L UCOCZ(f000 00002jj;

00(100020CC f 1C t 01T : viZ
0022102OCI 2000 .100 0 (CCC : wvI
0jf00002fj 200(o 100 (OUP: :W2
00(1000, 1000J 2 0 00CCI vt
0210002oo 1092 o,' 1 00CC toI :

4 0020 0C 122 2' 0001 t:2

00O222 !CJU1. 20212:2' 01Cr, t 5
pgu Ieuu i t -3n5s1i:mrW 12)

N p N 4d c'cck ser a' : n word m3-k wO vii viZ w3 tZ ti t' t3 t4 t5 reset

1 1

1 0

1 0

S~' ~2 19

1 - 0

Input and ETI) Response for Test Cases (1, 5. 8. 10, 15. 18)

w cock ser a'_ ri word-mark wZ wi w2 w3 to tI t2 t3 t4 t5
V c'oc 010:0101210101010:
V ser ia 1 _i r, 00 1 101:.00 11000011
V word-mark 000000001
K c oc 0010 phil 0-00 phi2 1012
V reset 1 10020000000000000
V set 0000000000000000001

'

Ii R
456 transistors. 220 nodes (0 pulled up)
initializat on took 285 steps
t5=X t4=X t3=X tZ=X tl=X tO::X w3=X w2=X wl=X wOD=X word-mark::X
ser al in> cloc=X
h inputs: Vdd qncl
1 inputs: GND vdc reset
>lf012o 12 010101 ol0lo1 c lock
>00:1021 10 1001100: 1:seria _in
>00000BI i0 0 oOOooo 1 :word_nark
>1f1010 10 1010 101 00: 1 :wo
>00 1001o II " 1001120 1 :wl
>0000 1000 100001011 :w2
>1010101010",1010101 :w3
>i 1 Iz11101011010:1 :to
>1 1201oI100 1100 11 ooo 1I: t 1
>1021I00100100100100 1: t2
> I102010I20 ff 1 1ff 1000101 1 :t3

* >11 0001110 1. 1 0:. 1 :t4
>I00000000000goo 00101 :t5
t5=2f t4=0 t3=0 tJ=0 tl12 tO:: w3=0 w2=0 wl=O w0=0 wordmark-1
ser'al _in=
.:lock=T

h inputs: Vdd and Cock ser alin wordmark
1 inputs: GND vdc reset
456 transistors. 220 nodes iZ pulled up)

INPIN 5 cock ser al in wordmark reset set
CLKPIN cock phi phi2

CLKI clock 00l
CLK2 phil 0100
CLK3 phi2 10 10

OLI'PIN :. w) wl w2 w3 tO tI t2 t3 t4 t5
>00 10l 1 0 1 1 1 1 0
>10010 1000110010 1 0
>01000 210100go10 1 0
>11000 1 100101000 1 0
200000 00111 " 10120 1 0
> 10000 1 100 0000 1 0
>0 100 0101101010 1 0
>1 1100 11 100010 1 0
200000 0010 10 1 0

I Of2o lO01 '100 1 0
>0100g 0,1114l20000 1I
110! 11 00(10000 1 0

>0010 0V(011 1 1 lt 1 C
>10o0 10GO01 " O010 1 0
01000 0 1010(1 G10 1 0

2 1000 1 1oIY 1000 1 0
>00000C 0011 I(0oi 1 0
> I 000C 0000010 flo0 1 0
)01:01 11111:1111 1
A1101 11111:1111 0 0

I V-B

0' i ,, ": :... ' . " _ ' .. " _ _ - _ "

NODE Al: Extract Test Data

!
Abstract

This node scans the ESIM file to separate out pertinent
test data. It classifies the extracted data into test input
data and reference output data. This function restructures
this data available in node configuration into vector form.
It also changes the memory storage pattern of restructured
test data from VAX computer system to RT-11 Operating System
data format.

4Extract Test Data
This node is decomposed into four major functions as

shown in Fig. A-3. These functions are:

(i) Read ESIM File: This function reads in the given
ESIM File line by line and classifies each incoming line
into command-line or data-line. A brief explanation of all
commands encountered in ESIM files is attached as Appendix
"F".

(ii) Tabulate Command Data: This function interprets
the commands in a given command-line to setup different
arrays to contain names of all mcnitjred pins, input pins
and clock pins. This function also generates an array of
output pins from the already available pin lists.

(iii) Restructure Test Data: This function interprets
the data line and stores all the test data pertaining to a
node into its respective buffer. This function does some
housekeeping by converting the node data into vector form
and storing it in an external file to empty buffer for the
following node data. This is done when a change in
pin-designation is made or data buffer overflows due to

* incoming data.

(iv) Chanqe Data Format: This function changes the
ri'eF &rv storage pattern of restructured test data from VAX
com;)utr system into RT-11 data format. This function is
']rr 'ed by a system library routine and therefore, it
w~ir be elaborated any further.

A-5

6°

Lc

4-jw

W 4-

4-Jcz

uwu

4-cc

I 4.j CA

4-j

A-6.

NODE All: Read ESIM File

Abstract

This node reads in given ESIM file, line by line until
the end of file is reached and classifies each incoming line
to be either a command-line or a data-line.

Read ESIM File

This node is decomposed into two functions as shown in

Fig. A-4. These functions are:

(i) Get Textline: This function reads a given ESIM
file line by line until the end of file and is implemented
by a system library routine (fgets) This function is not
elaborated any further.

* (ii) Classify Textline: This function, on receiving a
text-line from ESIM file categorizes it to be either a
command line if the first character of the textline is
"alphabetic" or to be a dataline if the first character of

given textline is ">" A brief explanation of terminology
used in ESIM files is attached as Appendix "F".

0

A-7

z

'0 0

0%

00

A-8p

P.

Node A12: Tabulate Command Data

Abstract

This node interprets the command in a given command
line to setup arrays of monitored pins, input pins and
clock pins. This function generates an array of output

pins from available pin-data and also changes the status of
any designated pin on receiving specific instructions.

Tabulate Command Data

This node is decomposed into three major functions as
shown in Fig. A-5. These functions are:

(i) Check for Specific Command: This function
singles out the first character of a given command line and
branches out to perform the specific sub-function on its

interpetation.

(ii) Tabulate Test Pins: This function generates
arrays of monitored pins, input pins and clock pins. It

establishes reference between all three arrays. This
function also stores available initialization data and

clock sequences and establishes correspondence between this

data and related pins.

(iii) Handle Remaining Commands: This function, on
interpreting the first character of command line to be "h
or I", scans arrays of output pins and clock pins to check
if any pin from these categories has not been forced to
hold a status of "high/low" voltage level. This function

changes the status of other pins outside above two

categories.

A-

4i

A- 9

4-

cua

40
cJI

~nco

44-1

722

A-10

~, ,

. ,..0

CN

C~I * a': C

-i -o
Caz

A-IO

!C

: L I I m mwm mlmlmi mill il il l i Iii'lm 'ill -- -

RP

NODE A13: Restructure Test Data

Abstract

This node interprets the data line and stores all the
test data pertaining to a node into its respective buffer.
This node does some house keeping by converting the node
data into vector form and storing it in an external file to
empty buffer for the following node data. This is done
when a change in pin-designation is made or data buffer
overflows due to incoming data.

Restructure Test Data

This node is decomposed into four major functions as
shown in Fig. A-6. These functions are:

(i) Store Node Data: This function on receiving a
data line, interprets the specific node for which data line
is intended and add the data to a buffer attached to that
node. It generates an overflow error if the incoming data
exceeds the capacity of respective buffer.

(ii) Change Data Structure: This function converts
the available test data in node configuration into vector
form. It changes the node data related to input pins into
test vectors and node data related to output pins into
reference vectors.

(iii) Append2-File: This function empties the buffer
by writing all restructured data to an external file, whose
name has been provided by the user.

4

A-11

4

II

)I E-

cz >m

EE

z0

W-4

0 41

EI-4

" 0 m

z cz

.41.

.0 k I

A-12

NODE A14: Change Data Format

Abstract

This node changes the memory storage pattern of
restructured test data from VAX computer system into RT-11
Operating System data format. This node is implemented by
a system library routine and therefore, it will not be
elaborated any further. (Fig. A-7)

A-13 I
I]

z

Q) I 4. J

-4 0

o bo

co

-v.

A-14J

NODE A2: Process User's Input

Abstract

This node on receiving all command/data input by the
user in response to system prompts, checks its syntax, and
sets various flags for operating mode conditions; it sets
up reference tables to correlate IC pin numbers with their
physical location on IC Tester and validates test data for
"Manual" mode of operation.

Process User's Input

This node is decomposed into four major functions as
shown in Fig. A-8. These functions are:

(i) Classify Input: This function receives all
characters or character strings from keyboard as command or
data input in response to system prompt and classifies all
inputs into three broad categories, IC data, Option Data
and Test Data. It also sets various flags under system
prompt to aid in classification of incoming data.

(ii) Select Operating Options: This function
allows the user to operate in any desired mode from a range
of selections offered in system menues. This function sets
different flags to run the program accDrding to user's
option.

(iii) Setup Reference Tables: This function selects
one of the prestored tables depending on physical
characteristics of ICUT. These reference tables contain
information to set one to one correspondence between IC
pins and IC tester pins for an IC of particular physical
characteristics. It then prompts the user to provide
information about input/output and other significant pins
of ICUT. This function stores this data to correlate IC
pin numbers in a test vector to their physical location on
IC Tester for effecting a test simulation.

(iv) Validate Manual Data: This function is
activated only in manual mode of operation. It checks for
any overlap of input test data over designated
output/power/ground pins.

A-15

m i cz

we14

cIco

WI4-J

4.J~ cn

CLC U)
co U)

0D UC

U..

4.J0.

C) 0

CA

0 4j cu -

>C- LU C

A-16

NODE A21: Classify Input

Abstract

This node receives all command/data input from
keyboard, checks its syntax, and categorizes the input into
three broad classes: ICdata, Option Data, and Test Data.

Classify Input

This node is decomposed into two major functions as
shown in Fig. A-9. These functions are:

(i) Get Keyboard Input: This function scans input
port and gets any character or character string input from
keyboard in response to system prompt. This function is
implemented through routines available in system library,
and therefore, it will not be elaborated any further.

(ii) Verify Keyboard Input: This function sets one
of three data classification "flags" from system prompt to
classify the input inthree broad categories of IC Data,
Option Data and Test Data for further processing.

A-17

- . . - -V

,4' ~ z

C)

U

U)
.2 -

C-C -4

C)! U

~ -C-

~ -4

-. C U)

U) .2)~C CC)

C) -4 C) C).

C!) U

t~) U

SC ~- C. U)
U)

U

____________ .2

I C I
-4

CC-.-) ,-4
~)DZ CC) C)

C. U C-.
-4 -

C)-
SC U)

(C U

U

.2 W
- i

I-
-. :-,I -

I.-.
C)

(N-

0z

zl

cnn~*

cu cn
u

41W

czU

NODE A4: Deduce Results

Abstract

This node converts the ICUT output into IC pin domain
and analyzes this output by comparing it with the reference
data. This node also transforms the analysis results into
test report for user's consumption.

Deduce Results

This node is decomposed into two major functions as
shown in Fig. A-16. These functions are:

(i) Analyze Results: This function transforms the

sampled output of IC tester into ICUT pin numbers' domain
by consulting reference tables. It segregates the output
vector from total output and compares it with the reference
data to single out any mismatch and point of mismatch. It
also generates an additional message on
successful/unsuccessful completion of test.

(ii) Handle Results: This function, on receiving a

test result, maps it into a test report from pre-stored
messages. This function depending on users' option allows
display of test results on terminal and/or storing these
test reports in a file for later consumption.

A-31

co I

C) 1

E U a

'C)) 0

a oz o

, .,-... o o L t-1;.

toc

-,4 U

4 E

4-))

00

U

-.-. , -- - - - --- -

NODE A32: Perform Test

Abstract

This node performs actual testing of ICUT (IC Under
Test). Testing includes initialization of IC tester and
ICUT, simulating ICUT with a test vector and sampling its
ouput for evaluation.

Perform ltst

This node has been decomposed into four major functions
as shown in Fig. A-15. These functions are:

(i) Initialize Tester: This function physically
applies "Ground/Power" voltages to pertinent tester pins to
force them out of ambiguous logic states.

(ii) Initialize ICUT: This function simulates ICUT
with users' supplied data or initialization data from test
data file (ESIM file) through a predetermined number of
clock cycles to force the status of output pins to a steady
state value. The number of clock cycles are determined by
the available data.

(iii) Simulate ICUT: This function after being
supplied with a test vector and a flag to proceed, applies
corresponding voltages to pins of an ICUT. This function
also translates the clocking sequence into voltage
variation at required pin to provide a simulation to the IC
under test.

(iv) Sample ICUT: This function stores the status of
all pins of ICUT after it has been activated. These pin
status values are tester output available to other
functions for processing.

A-29

• . " . . • •.. . . ,...,,..,... .,.,,.... .,- ...J,.,- I

4co

a) 0~

-~ 43

4-j -l

0)4 Fz

~ 41

(L),- 4**J CC 4 C

W-

>) a) 0) 4

000

4. U CO
CO m Q)

0 W)

0Q)
- w -

0Q)

uu
4JI4

Iz CO

czz

A-28

NODE A31: Process Test Data

Abstract

This node converts the test data from IC pin-number
domain to physical location of ICUT pins on tester domain;
changes the test data format to "SIEVE" format (a specific
data format particularly required for simulation of
Stanford IC tester). This node has been decomposed into
four major functions Segregate Reference Data, Correlate
Tester pins & Manual data, Correlate Tester pins & File
Data and Convert Test data into SIEVE Format.

Process Test Data

This function has been sub-divided into four major
sub-functions as shown in Fig. A-14. These sub-functions
are:

(i) Segregate Reference Data: This function reads
in data from ESIM (test data) file, separates out
simulation data and expected output (reference data) for a
particular input.

(ii) Correlate Tester Pins & Manual Data: This
function sets correspondence between the test data received
from the key-board in "Manual" mode of operation and
location of ICUT pins on the IC tester.

(iii) Correlate Tester Pins & File Data: This
function sets correspondence between the test data read
from ESIM file in "Auto" mode of operation and location of
ICUT pins on the IC tester.

(iv) Convert Test Data into SIEVE Format: This
function changes the format of test data into "SIEVE"
format. SIEVE is a special data format required for input
to Stanford IC tester. An explanation of this data format
is attached as Appendix "E".

A-27

k

4.J

co-I

0 -

E ca

-~ 0

-z 0c
4J m-

0E-

oM

A-26

NODE A3: Apply Simulations

Abstract

This node sets correspondence between physical location
of ICUT pins on IC tester and test vectors in ICUT pin
numbers' domain. It changes the test vector into SIEVE
format, initializes IC tester and the ICUT. This node
applies test vectors to simulate the ICUT, and samples the
tester output for evaluation by other nodes.

Apply Simulations

This node is decomposed into two major functions as
shown in Fig. A-13. These functions are:

(i) Process Test Data: This function receives test
vectors from test data file in "Auto" mode of operation and
from keyboard in manual mode of operation. It sets
correspondence between ICUT pin numbers to be simulated by
a test vector and their physical location on IC tester by
consulting reference tables. This function also converts
the test vectors into SIEVE format, which is a special data
format required for simulation of Stanford IC Tester. An
explanation of "SIEVE" format is attached as Appendix "E".

(ii) Perfcm Test: This function initializes the IC
tester by appljing voltages to significant pins to force
out any ambigious voltage state from tester pins. It
initializes the ICUT by applying initialization vectors in
sequence to bring ICUT output pins to a steady state
condition before proceeding with the actual test. This
function also applies test vectors to IC tester to simulate
ICUT and samples the ICUT for resultant output.

0

A-25

0

"a -3iy
HI 4-

>- C-

M ca

cc - r. a

(3))

"-I4
Ail

4-1-Z
0Oi C14

Cl):0)~ :L.'-:l

C,

0IjM

Il): c-

CJI ~C4 .

A-24

I]

Node A24: Validate Manual Data

Abstract

This node is activated only in manual mode of
operation. It checks for any overlap of input test data
over designated output/power/ground pins.

Validate Manual Data

This nodc- is decomposed into two functions as shown in
Fig. A-12. These functions are:

(i) Check Overlap with Output Pins: This function
carries out bitwise comparison of test vector to check if
any pin designated as output pin is not simulated. It
generates an error on detecting such an overlap and prompts
user to modify his input data. This function is activated
only in "Manual" mode of operation.

(ii) Check Overlap with Power/Ground Pins: This
function carries out bitwise comparison of test vector to
check if any pin designated as power or ground pin is not
simulated. It generates an error on detecting such an
overlap and prompts user to modify his input data. This
function is activated only in "Manual" mode of operation.

A-23

WA- -4 Q

A' -4

E- -,

,-It,

CL c

Z3f4r-

ITIc

u~ U)

4.JQa

C13 -4 -

a) ca

to
ca

m~

cc -4U 0)4)

44

0
<A~C I

0)0

z

A-22

NODE A23: Setup Reference Tables

CAbstract

This node selects one of the prestored tables depending
on physical characteristics of an ICUT. These reference
tables contain information to set one to one correspondence
between IC pins and IC tester pins for an IC of particular
physical characteristics; it then prompts the user to
provide information about input/output and other
significant pins of the ICUT. This node also stores this
data to correlate IC pin numbers in a test vector to their
physical location on IC Tester for effecting a test
simulation.

Setup Reference Tables

This node is decomposed into six functions as shown in
Fig. A-11. These functions are:

* (i) Select Appropriate Table: This function on
receiving an input from keyboard, in response to a menu
which prompts the user to select one of the five IC
characteristics befitting the ICUT, makes the address of
corresponding table available to the program. Five
different tables for ICs with following characteristics
have been prestored in the memory: 14, 16, 20, 24, 40pin
dual-in-line packages. These tables correlate the IC pin
numbers to IC tester pins when ICUT is positioned on the IC
tester in a manner that pinl of ICUT coincides with the
top-left pin of IC tester.

(ii) Fill in Reference Table: This function prompts
0] the user to fill in complete reference table by inputting

pin designation and class of each pin. (e.g., to provide
information like pinl = k-input "I", pin4 = phi2 "C", pin
14 = Vcc "P" and pin 7 = Gnd "G", etc.)

(iii) Setup Input Pins Table: This function, scans
the reference table after it has been filled up by the
user, and sets up another array for pins marked as "input"
pins.

(iv) Setup Clock Pins Table: This function, scans
the reference table after it has been filled up by the
user, and sets up another array for pins marked as "output"
pins.

n (v) Setup Power/Ground Pins Table: This function,
scans the reference table after it has been filled up by
the user, and sets up another array for pins marked as
"power/ground" pins.

(vi) Setup Output Pins Table: This function, scans
the reference table after it has been filled up by the
user, and sets up another array for pins marked as "output"
pins.

A-21

S".

0

C

0*0
--

.'- 0

414

4 0

0 a)

41

C~Q a)

4-C)

I C)
-- 4

0 4,0

-4 (n

wj
a)0

H 0.

z

A -20

NODE A22: Select Operating Option

Abstract

This node, receives option data from keyboard in
response to different options made available to user in
various menus, verifies their correctness and sets option
flags to this effect.

Select Operating Option

This node is decomposed into three major functions as
shown in Fig. A-10. These functions are:

(i) Select Mode: This function, in response to
system prompt, receives IC nomenclature and preferred mode
of operation data from keyboard. In addition, this
function asks the user to input name of test file for
"Auto" mode of operation.

(ii) Verify Mode: This function checks the IC
nomenclature and searches the test data files' directory
with test file name. It generates an error for
non-availability of test file, informs the users to this
effect and asks for another selection.

(iii) Setup Options: This function sets various
option flags to be true/false for particular selection

C after user has opted for one of the operating choices
offered to him in system operating menues.

All user options and corresponding flags are listed
below:

UOPM MANUAL mode. (abbreviated as MAN
UOPMl0 MAN with single step execution and terminal output

only.
UOPMll MAN with single step execution and terminal & file

output.
UOPM20 MAN with multi-step execution & terminal output

only.
UOPM21 MAN with multi-step execution and terminal & file

output.
UOPA AUTO mode
UOPA10 AUTO with "stop execution at first test failure"

and terminal output only.
UOPAl1 AUTO with "stop execution at first test failure"

and terminal & file output.
UOPA21 AUTO with "stop execution after X-instruction" and

terminal output only.
OUPA22 AUTO with "stop execution after X-instructions"

and terminal & file output.
UOPA31 AUTO with "run whole test program printing all

test failures" on terminal.
UOPA32 AUTO with "run whole test program printing all

test failures" on terminal & storage file.

A-19

6

..

NODE A41: Analyze Results

Abstract

This node receives the resultant output of IC-tester,
converts the output into ICUT pin domain from IC tester
location reference by consulting reference tables. It also
generates an error for any mismatch between the received
output and expected output (reference data).

Analyze Results

This node is decomposed into two major functions as
shown in Fig. A-17. These functions are:

(i) Convert Sample Data into IC Pin Domain: This
function converts the sampled output of IC tester into ICUT
pin numbers domain for comparison with the reference data.
This conversion is achieved by consulting reference tables.

(ii) Compare Sample Data and Reference Data: This
function compares output data and reference data bit by bit
to single out any non-conformity between the two values.
It generates a GO/NOGO message for successful/unsuccessful
completion of P test and points out particular ICUT pins
where output value does not match the reference value in
case of a test failure.

A

A-33

(U i

Iz I1

41u 1

44
0 -l CL 'J

C 4-1

cIl

r-4

C CJ

Cl,

A-344

NODE A42: Handle Results

Abstract

This node receives the test results, generates a test
report depending on user's operating options, guides the
resultant test report to display terminc-i and/or to a file
for storage.

Handle Results

This node is decomposed into four functions as shown in
Fig. A-18. These functions are:

(i) Formulate Test Report: This function generates
test report from the test results and pre-stored messages,
depending on successful/unsuccessful termination of a test.

(ii) Generate Storage Buffer: This function,
allocates a buffer and stores all test reports generated
during a test. This function is activated only if opted by
user.

(iii) Copy Buffer to Disk: This function, not
elaborated any further as it has been implemented by a
library routine, copies the buffer containing test reports
to a given file on disk. This function is also activated
if opted.

(iv) Display Test Report: This function, depending
* on the user's operating option, displays all test reports

on the terminal. This function has also been implemented
by a library routine.

0

A-35

0

00

Aiw

4-I

a. U) 0

a) 0) n

WQ)

a)I
4N

S 41
CIO

4.j

1-4

0 L.J CU

4-1 Q)

co 14

$4C

00

4.J 4 -CC
4- l (I CCJ J

z

6 A-36

Appendix "B"

Node List, Node Diagram and Node Descriptions

For Detailed Design of "Extract Test Data" Function

Extract Test Data

Node Al: Extract Test Data

Node All: Read ESIM File

Node Alll: Get Text-Line

Node A112: Classify Text-Line

Node A1121: Read First Character

Node A1122: Check if Alpha Numeric

Node A1123: Check if GT

Node A12: Tabulate Command Data

Node A121: Check for Specific Command

Node A122: Tabulate Test Pins

Node A1221: Create Array of Monitored

Pins

Node A1222: Create Array of Clock Pins

Node A1223: Create Array of Input Pins

Node A1224: Generate Array of Output

Pins

Node A12241: Mark Inpins

Node A12242: Mark Clk Pins

Node A12243: Create Outpin Array

Node A123: Handle Remaining Commands

Node A1231: Validate Command Line

B-1

7- . 7- -7, K - - T - 4- ~ - -* .

Node A12311: Create Array of

Effected Pins

Node A12313: Check if Element of

Outpin Array

Node A1232: Change Effected Pins' Status

Node A13: Restiucture Test Data

Node A131: Store Node Data

Node A1311: Segregate Data & Node Name

Node A1312: Locate Test Node in Monpin

Array

Node A1313: Add Data in Associated Node

Buffer

Node A13131: Gauge Data in Buffer

Node A13132: Gauge Incoming Data

Node A13133: Check Overflow

Node A13134: Add New-Data to Pre-

Data

Node A132: Change Data Structure

Node A1321: Segregate Input & Output

Nodes

Node A1322: Convert Node Data Into

Vectors

Node A14: Change Data Format

B-2

NODE Al: Extract Test Data

Abstract

This node scans the ESIM file to separate out pertinent
test data. It classifies the extracted data into test
input data and reference output data. This function
restructures this data available in node configuration into
vector form. It also changes the memory storage pattern of
restructured test data from VAX computer system to RT-11
Operating System data format.

Extract Test Data

This node is decomposed into four major functions as
shown in Figure B-1. These functions are:

(i) Read ESIM File: This function reads in the
given ESIM File line by line and classifies each incoming
line into command-line or data-line. A brief explanation
of all commands encountered in ESIM Files is attached as
Appendix "F".

(ii) Tabulate Command Data: This function interprets
the commands in a given command-line to setup different
arrays to contain names of all monitored pins, input pins
and clock pins. This function also generates an array of
output pins from the already available pin lists.

(iii) Restructure Test Data: This function interprets
the data line and stores all the test data pertaining to a
node into its respective buffer. This function does some
housekeeping by converting the node data into vector form
and storing it in an external file to empty buffer for the
following node data. This is done when a change in
pin-designation is made or data buffer overflows due to

4 incoming data.

(iv) Change Data Format: This function changes the
memory storage pattern of restructured test data from VAX
computer system into RT-11 data format. This function is
implemented by a system library routine and therefore, it

4 is not being elaborated any further.

4

B-3

-

cI Q

W 41

0)0

4-3J

4j-

$-4 -4
-W Q))

__ _ __ _ 0) C

COCOCO-4

COI 4-

C-41)

S 4-4

~Z0) -44

ca u F-4 Q)

z z -,

3-44
44

NODE All: Read ESIM File

Abstract

This node reads in given ESIM file, line by line until
the end of file is reached and classifies each incoming
line to be either a command-line or a data-line.

Read ESIM File

-his iode is decomposed into two functions as shown in

Figure B-2. These functions are:

(i) Get Text-Line: This function reads a given ESIM

file line by line until end of file and is implemented by a
system library routine (fgets). This function is not
elaborated any further.

(ii) Classify Text-Line: This function, on receiving
a text-line from ESIM file categorizes it to be either a
command line if first character of the test-line is
"alphabetic" or a data-line if first character of given
text-line is ">". A brief explanation of terminology used
in ESIM files is attached as Appendix "F".

B-5

z

cn 4- I

-4 r '4

Q)Q

a)

)1A

Q)

CN

r1 1-

L~OJ

B-6

NODE A112: Classify Text-Line

Abstract

This node interprets the first character of the
text-line and classifies the text line to be either a
cmd-line or a data-line.

Classify Text-Line

This node is decomposed into three functions as shown
in Figure B-3. These functions are:

(i) Read First Character: This function reads the
first character of a given text line. This is implemented
by considering text line to be a an array of characters and
accessing the array element at subscript [0].

(ii) Check if Alphabetic: This function confirms if
first character of the given text-line is alphabetic. This
is implemented by a system library subs-routine
isalpha()).

(iii) Check if GT: This function compares the given
character with character ">" (greater than sign) to confirm
if text-line is a data line. This is implemented by "C"
language relation operator "==".

B-7

czz

u~-E- -1

.,.j,

4-1

44u -4 .,4
111 1, CZ -

4-i 4-1

WL -4

w - Cl

caCl

4-i NB-8

NODE A12: Tabulate Command Data

Abstract

This node interprets the command in a given command line
to setup arrays of monitored pins, input pins and clock pins.
This function generates an array of output pins from available
pin-data and also changes the status of any designated pin on
receiving specific instructions.

Tabulate Command Data

This node is decomposed into three major functions as
shown in Figure B-4. These functions are:

(i) Check for Specific Command: This function singles
out first character of a given command line and branches out
to perform specific sub-function on its interpretation.

(ii) Tabulate Monitored Pins: This function generates
arrays of monitored pins, input pins and clock pins. It
establishes reference between all three arrays. This function
also stores available initialization data and clock sequences
and establishes correspondence between this data and related
pins.

(iii) Handle Remaining Commands: This function, on
interpreting the first character of command line to be "h or
1", scans arrays of output pins and clock pins to check if any
pin from these categories has not been forced to hold a status
of "high/low" voltage level. This function changes the status
of those pins which are outside above two categories of input
and output pins.

B-9

z

Wcn ~ cn

C; 0D Z: I

czz

Q)

0) .14 4

C: CIA

B-10

D-151 961 SYSTEM DESIGN OF AUTOMATED VLSI
(VERY LARGE SCALE 2/4

R1 i INTEGRATED) TEST STATIG .(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. S TRRIG

UNCLASSIFIED DEC 84 AFIT/GE/EE/84D-27 F/G 9/5 ML

-~~
R; -.:M~

11111 I .1111128 II.

3t, JJ 2.2

4

NODE A121

Abstract

This node interprets first character of a given command
line and branches out to perform specific sub-function.

Check for Specific Command

This function on detecting the first character of the
command-line to be W, V, K, or I, branches out to tabulate
the information in the given "command line". For other
commands like "h, 1, x, N", function "handle remaining
commands" is activated.

This function is implemented by "C" language "switch
statement". It will not be elaborated any further.

* (Figure B-5)

B-i

wii

4

-4

WI u

QQ

0 0
0 4-4

WU 2 -r Zr
0 uWE 4'-4 -

cI 4~ WW ,

r- 0I

0

-4

-4

B-124

NODE A122: Tabulate Test Pins

Abstract

This node on receiving specific commands sets up arrays
of monitored pins, input pins and clock pins. It
establishes a cross reference between these array elements
and between each array element and data related to it.
This function also generates an array of output pins.

Tabulate Monitored Pins

This node is decomposed into four major functions as
shown in Figure B-6. These functions are:

(i) Create Array of Monitored-Pins: This function,
on interpreting first character of command line to be "w",
sets up an array of all pin names included in the remaining

command line.

(ii) Create Array of Input-Pins: This function, on

interpreting first character of command line to by "V",
sets up an array of input-pin and adds the pin name in this
and all subsequent "input" command-lines to this array. It
establishes a reference between each input pin and data
related to it. This function also sets up cross reference

between elements of this array and array of monitored-pin.

(iii) Create Array of Clock-Pins: This function, on
interpreting first character of command line to be "K",

sets up an array of all pin names included in the remaining
command line. It establishes a reference between each
clock pin and clocking sequence for this pin. This
function also sets up cross reference between elements of
this array and array of monitored-pins.

(iv) Generate Array of Output Pins: This function on
interpreting the first character of command line to be "I",
segregates all pins from array of monitored pins not marked

as input or clock pins, and lists them into a separate

array.

B-13

Co I 0I

~-4s.-4 4-I

*7) Q) 4-4
I4 4- 02

4 C -4

>- 4N W1

Ir CCD.~ 4i0

-4- 4 -1C4--

r54Q

-I--

Wi .,-4-'.4-4

4 L- -d
a) 05-C'N E
cz >-. -r-w

-, -4- r

-41N

Q W -4

.0 *-4

B- 14

I]

NODE A1224: Generate Array of Output Pins

Abstract

This node classifies the pins in array of monitored
pins for being clock pins or input pins, and creates a
separate array of output pins from unspecified pins in
array of monitored pins.

Generate Array of Output Pins

This node is decomposed into three major functions as
shown in Figure B-7. These functions are:

(i) Mark Inpins: This function classifies the pins
included in array of monitored pins to be input pins if
these are also elements of inpin-array.

(ii) Mark Clkpins: This function classifies the pins
included in array of monitored pins to be clock pins if
these are also elements of clkpin-array.

(iii) Create Outpin-Array: This function scans the
array of monitored pins and creates another array
consisting of pins not marked as input/clock pins.

B-15

1<

z

03 r-- C

4~

U, '4-4

C~I 4

C14i

1--I

4r- 2 115-
-I4 C14

-4-

B-1

.. - -. . - -. -' .w-- .-- % ..--. - -.- . ' " . . r . j .. . , , .

I

NODE A123: Handle Remaining Commands

Abstract

This node validates the commands which effect the
status of a designated pin. It generates an erroi inr any
invalid command or otherwise changes the status of the
effected pin.

H1andle Remaining Commands

This node is decomposed into two functions as srhown in
Figure B-8. These functions are:

(i) Validate Command Line: This function, on
interpreting the first character of a given command line to
be "h or 1", scans the arrays of output pins and clock pins
to check if status of any pin from these categories has
been effected. It marks the command to be "valid" if no
pin from the above two classes is effected by the command.

(ii) Change Effected Pins' Status: This function
changes the status of effected pin, which belongs to the
categories of either input pins or unmarked pins, and holds
it until any new command is received to change it status.

B-17

!.

-. -.- ~----~ - 7- ' s-. - -- -- W

IC

4'a

~~0
ww IV'~

~ e'4
~ U J) 4) rE
c~w~c 4

-~~~ c44 -
QLzu u

>S
w

.-4 54 r4

"0 0 r

., -4

CI .-4-4 -

Q)i Cd
-4 -,4 u
ud a

Ocd CNJ

B-1

II

NODE A1231: Validate Command Line

Abstract

This node ensures that any command line may not force
an output pin to a "high/low" voltage status permanently.

Validate Command Line

This node is decomposed into two functions as shown in
Figure B-9. These functions are:

(i) Create Array of Effected Pins: This function, on
interpreting the first character of the RC Command-Line to

be "h" or "1" sets up an array of all remaining pins
included in the command line.

(ii) Check If Element of Outpin Array: This function
gets each element of newly created "effected pin array" and
scan outpin array for its match. It declares RC Cmd-Line
to be a valid Cmd-Line if no match is found.

B-19

I ,,,,

- .- rrn.- - - -r W~ r C7 r3

44

-4

4

L" 4 .

* ~-4

-~--2

-- 4

00

NODE A13: Restructure Test Data

Abstract

This node interprets the data line and stores all the
test data pertaining to a node into its respective buffer.
This node does some housekeeping by converting the node
data into vector form and storing it in an external file to
empty buffer for the following node data. This is done
when a change in pin-designation is made or data buffer
overflows due to incoming data.

Restructure Test Data

This node is decomposed into four major functions as
shown in Figure B-10. These functions are:

(i) Store Node Data: This function on receiving a
data line, interprets the specific node for which data line
is intended and add the data to a buffer attached to that
node. IL generates an overflow error if the incoming data
exceeds the capacity of respective buffer.

(ii) Change Data Structure: This function converts
the available test data in node configuration into vector
form. It changes the node data related to input pins into
tesL vectors and node data related to output pins into
reference vectors.

(iii) Append2-File: This function empties the buffer
by writing all restructured data to an external file, whose
name has been provided by the user.

13-21

cuJ

C: LJ Ucz cl ZI L
C) CZ 4 ct

4~-4

I.

jk z

.2

- I

2!

-~

C-

C
C
C

C)

CX.

.2

-J
I-

0
0

Node A21: Clasify Input

Abstract

This node receives all command/data input from keyboard,
checks its syntax and categories the input into three broad
classes: IC Data, Option Data and Test Data.

Classify Input

This node is decomposed into two major functions as shown
in Figure C-2. These functions are:

(i) Get Keyboard Input: This function scans input port
and gets any character or character string input from
keyboard in response to system prompt. This function is
implemented then routines available in system library, and
therefore, it will not be elaborated any further.

(ii) Set Data Classification Flags: This function sets
one of three data classification flags from system prompt to
classify the input in three broad categories of IC Data,
Option Data and Test Data for further processing.

C-5

0) Q

0-) Q) wd

cu a)

t..,4

a)4.
0 =

crC

.L-J

cr)

C.)

- - ~- - , ,. 1 . . - -- . ' - r r r ' " r J "r -

0r

Node A2: Process Users' Input

Abstract

This node receives all command/data input by the user in
response to system prompts, checks its syntax and sets
various flags for operating mode conditions, sets up
reference tables to correlate IC pin numbers with their
physical location on IC Tester and validates test data for
"Manual" mode of operation.

Process Users' Input

This node is decomposed into four major functions as
shown in Figure C-1. These functions are:

(i) Classify Input: This function receives all
characters or character strings from keyboard as command or
data input in response to system prompt and classifies all
inputs into three broad categories, IC Data, Option Data, and
Test Data. It also sets various flags under system prompt to
aid in classification of incoming data.

(ii) Select Operating Options: This function allows
the user to operate in any desired mode from a range of
selections offered in system menues. This function sets
different flags to run the program according to users'
option.

(iii) Setup Reference Tables: This function selects one
of the prestored tables depending on physical characteristics
of ICUT. These reference tables contain information to set
one to one correspondence between IC pins and IC tester pins
for an IC of particular physical characteristics. It then
prompts the user to provide information about input/output
inrd other siqnificant pins of ICUT. This function stores
this data to correlate IC pin numbers in a test vector
tct[rIr physical location on IC Tester for effecting a test
2 mu Iat21cn.

(iv) Validate Manual Data: This function is activated
oruv in manual mode of operation. It checks for any overlap
of innut test data over designated output/ppower/ground pins.

C-3

SJ

Node A23: Setup Reference Table

Node A231: Select Appropriate Table

Node A2311: Propmt User to Mark IC-Char

Node A2312: Get Ic Characteristics

Node A2313: Check Syntax of Selection

Node A2314: Locate Appropriate Table

Node A232: Fill In Reference TAble

Node A2321: Get Pin-Designation

Node A2322: Get Pin-Class

Node A2323: Store Data in Selected Table

Node A233: Setup Input Pins' Table

Node A2331: Locate Class "I" Pin

Node A2332: Setup Ar-6y of Input Pins

GI Node A234: Setup Clock Pins Table

Node A2341: Locate Class "K" Pin

Node A2342: Setup Array of Clkpins

Node A235: Setup Pwr/Gnd Table

Node A2351: Locate Class "P/G" Pin

Node A2352: Setup Array of "P/G" Pins

Node A236: Setup Output Pins Table

Node A2361: Locate Class "0" Pin

Node A2362: Setup Array of Output Pins

Node A24: Validate Manual Data

Node A241: Check Overlap with Output Pins

Node A242: Check Overlap with Pwr/Gnd Pins

C-2

Appendix "C"

Node List, Node Diagrams & Node Descriptions

For Detailed Design of "Process Users' Input Function

Process Users' Input

Node List

Node A2: Process Users' Input

Node A21: Classify Input

Node A211: Get Keyboard Input

Node A212: Set Data-Classification Flags

Node A22: Select Operating Option

Node A221: SAelect Mode

Node A2211: Get Mode

Node A2212: Set Flag for Auto Mode

Node A2213: Prompt for Name of Test File

Node A2214: Store Text File Name

Node A222: Verify Mode

Node A2221: Check Availability of Test File

Node A2222: Confirm Mode Validity

Node A223: Setup Options

Node A2231: Prompt User to Select Option

Node A2232: Get Option Response

Node A2233: Check Option Syntax

Node A2234: Set Option Flag

C-i

-4 M -4

U< -

rS r4 CZ
cz 0

w wic
C -4 44-

CZ L4-4 I
-4 (1) 0

m) .,4 -4 .0 .

U) 0

., -4

Q):)

0 0
co

co

__ __ _ CZe

u c 44 ci

0

-41

ciz

u CI-V < f
4) -

B-30-

j. j

NODE Al4: Change Data Format

Abstract

This node changes the memory storage pattern of
restructured test data from VAX computer system into RT-11j
Operating System data format. This node is implemented by
a system library routine and, therefore, it is not being
elaborated any further (Figure B-14).

B- 291

II

-W 4-a

>4 0- l)

a)0 0 -4

u0 r

41 c

0_ 4- CTJ

4-1

-4 -w4

41J

pw

4.4.

j 4 l
41 I :3)-

CZ C - C-4 -
to- 0 m -1 A

Q) 4J -4-4

czz

E-2

.,., - -

Node A132: Chanqe Data Structure

Abstract

This node segregates the nodes into two classes of
input and output nodes. It converts the data associated
with input nodes into input test vectors and data
associated with output nodes into output reference vectors.

Change Data Structure

This node is decomposed into two functions as shown in
Figure B-13. These functions are:

(i) Segregate Input & Output Nodes: This function
classifies the test nodes into input and output nodes by
consulting arrays of input pins and output pins
respectively.

(ii) Convert Node Data into Vectors: This function
converts node data contained in input nodes and output
nodes into test vectors and reference vectors
respectively. It considers all input nodes as an array,
whose elements itself are character arrays. This function
transposes this array to convert node data into test
vectors.

B-27

aLai

-4,

>1-~ cn
ct-J -4

~~-4
LW4

-4

0
-o

-4

0)

.LJ

z a
oa

C,41 W
bU)

p"l. CC0 cr -4'1
4- u4

1~

z -4

Q)-40) cl) L
Z co I-) c

r-4

~Oiaa
z:-W

< 0
z

B-26

NODE A1313: Add Data in Associated Node Buffer

Abstract

This node gauges the amount of data in a given "data
line" and checks the empty space available in its
associated buffer. It generates a buffer overflow sianal
if incoming data exceeds the available empty space or
otherwise adds the new data to previous data.

Add Data in Associated Node Buffer

This node is decomposed into four functions as shown in
Figure B-12. These functions are:

(i) Gauge Data in Buffer: This function checks the
amount of data in a buffer -- it is implemented by a system
library routine (strlen(Sl)) and will not be elaborated
any further.

(ii) Gauge Incoming Data: This function checks the
amount of data in the given "data line". It is implemented
by a system library routine (strlen()) and will not be
elaborated any further.

(iii) Check Overflow: This function, simply adds the
amounts of new data and pre(vious)-data and compares it
with buffer capacity. If the total data exceeds the buffer
capacity, buffer overflow signal is generated.

(iv) Add New Data to Pre-Data: This function, if
buffer overflow signal is not generated, adds new data to
the buffer by a system library routine (strcat (Si.

II
S 2)•

B-25

I

UY-

u I r

4-O -

41Cf 0 W 4l
7; ca~ z L-<

U) < --4u ~I

0 "0

zI

cz

ct

C4-J 4C -4 C

Wz u W C -

0 <cc 0

Z 0 0

O 4

4

0- cl

(t ct r-4,C

WL Z 0'

4--J

Cd64

Cd I.-

WB-24

F.. - - * .- - . .

0

NODE A131: Store Node Data

Abstract

This node, on receiving a data line, adds the test data
in the associated node buffer. In case of buffer overflow,
it generates an error signal by which a function is
activated to empty the buffer before adding any more data
to the buffer.

Store Node Data

This node is decomposed into three major functions as
showin in Figure B-11. These functions are:

(i) Segregate Data and Node Name: This function
partitions a given data line into data-part and name-part
by sensing the presence of ":" (colon-mark). An example of

* typical data-line is shown in Appendix-"F" (Page F-11).

(ii) Locate Test Node in Monpin-Array: This function
scans the array of monitored pins and locates the pin, for
which test data has been received in a given "data-line".

G(iii) Add Data in Associated Buffer: This function
gauges the incoming data and empty space in the associated
buffer. Buffer overflow signal is generated if incoming
data exceeds the capacity of buffer otherwise data is added
to the specific buffer.

r

0

B-23

0

-- - . P

Node A22: Select Operating Option

Abstract

This node, receives option data from keyboard in response
to different options made available to user in various
menues, verifies their correctness and sets option flags to
this effect.

Select Operating Option

This node is decomposed into three major functions as
shown in Figure C-3. These functions are:

(i) Select Mode: This function, in response to system
prompt receives IC nomenclature and preferred mode of opera-
tion data from keyboard. In addition, this function asks the
user to input name of test file for "Auto" mode of operation.

(ii) Verify Mode: This function checks the IC nomen-
clature and searches the test data files' directory with test
file name. It generates an error for non-availability of
test file, informs the users to this effect and asks for
another selection.

(iii) Setup Options: This function sets various option
flags to be true/false for particular selection after user
has opted for one of the operating choices offered to him in
system operating menus.

All user options and corresponding flags are listed
below:

UOPM MANUAL mode. (abbreviated as MAN
A UOPM10 MAN with single step execution and terminal

output only.
B UOPM11 MAN with single step execution and terminal and

file output.
C UPOM20 MAN with multi-step execution and Terminal

output only.
D UPOM21 MAN with multi-step execution and terminal &

file output

UOPA AUTO mode
A UOPAl0 AUTO with "stop execution at first test

failure" and terminal output only.
B UOPAll AUTO with "stop execution at first test

failure" and terminal & file output.
C UOPA21 AUTO with "stop execution after X-instruction"

and terminal outpl't only.
D UOPA22 AUTO with "stop (-:ecution after X-instructions"

and terminal and file output.
E UOPA31 AUTO with "run whole test program printing all

test failures" on terminal.
F UPOA32 AUTO with "run whole test program printing all

test failures" on terminal and storage file.

C-7

(n C1
cii

cu 00

(U 0.

C%4

tt

$4 0

-14 41
41 z (U c

M "0

C-

u a) w
u-

C13

0~

I CN
CN

00

Node A221: Select Mode

Abstract

This node in response to system prompt receives from
keyboard the preferred mode of operation. For "Auto" mode
of operation, it asks the user to input name of respective
test-data file.

Select Mode

This node is decomposed into four functions as shown in
Figure C-4. These functions are:

(i) Get Mode: This function receives a character "A"
or "M" from keyboard for Auto or Manual mode of selection as
preferred mode of operation.

(ii) Set Flag for Auto: This function sets respective
flags to be true for "Auto" mode of operation or "Manual"
mode of operation.

(iii) Prompt for Name of Test File: This function is
active only if "Auto" mode is selected. It prompts the user
to input name of file which contains the test data to
simulate ICUT and reference data to verify correctness of
results.

(iv) Store Test-File Name: This function stores name
of test-file in a specific buffer for future reference. In
"C" language, this is readily implemented by system library
function (scanf (S)

C-9

00
&J Q) -4 j

:3 0) ~
0 S

00

a) co V

0

Q)0

2c

4.) Ez C\

C-10

-o

Node A222: Verify Mode

Abstract

This node, sets flag for "valid mode" if test data file
is available for Auto mode of selection. The mode is always
valid for "Manual" mode of operation.

Verify Mode

This node is decomposed into two functions as shown in
Figure C-5. These functions are:

(i) Check Availability of Test File: This function
scans the file directory of a disk to check availability of
test data file, whose name has been input. This function is
readily implemented in "C" language by system function (oper
(...)), which returns a zero value for unsuccessful access
to a given file.

(ii) Confirm Mode Validity: This function sets valid-
mode flag to be true in "Manual" mode and also in "Auto"
mode if system function (oper(...)) returns a non-zero
value after successfully accessing the given file.

C-li

0

I

r
L~J

at z
-~Jl
0!

-4
'-41
Cal

CM

* E >~ CM
H~4 CM~

4-.0~0 ~,

irS -~

Ca

a,
0

Ge
4-.

4-) Ca -4
0 4-a 0 a,

Ca LL.
'-4

C)
~0 1 -4'
0 ~4 a, a,.1 ~i "-4 - CM* -~

*~~Z ~4 CM 0
C.) Ca~-C.~ CM a,
0)-c -.:0

I 4-.
I -4 -4

4- ~J..

a,

0

w
C.) 0~ ~II

-, II-.
--4 I'-

C.]
0

(C.
.20)

V r' (N.)

-. CM
C-'-.

0 w
C
0z

0

Node A223: Setup Options

Abstract

This node prompts user to select one of the offered
sub-node of operations from a given menu. This node checks
the syntax of the particular selection and sets option flag
to that effect.

Setup Option

Thisn ode is decomposed into four functions as shown in
Figure C-6. These functions are:

(i) Prompt User to Select Option: This function,
offers one of the broad categories "Auto or Manual" option
menu to user for making a selection. The details of all
available option are described in description of Node A223.

(ii) Get Option Response: This function reads
thekeyboard input, offered in response to the select-option
menu.

(iii) Check Option Syntax: This function, checks the
syntax of input, for it to be within expected range of
response. This function repeats itself until valid response
is received from user.

(iv) Set Option Flag: This function, on valid
selection of particular sub-mode of operation, sets the
respective flag to be true.

C-13

4 -4,M

o
>O D C

0 C.0

c~co

C) -4

. . 0C) .

00

"-D 0

C)J

:C:D -) Q

co (N

'4

AI

NODE A23: Setup Reference Table

Abstract

This NODE selects one of the prestored tables depending
on physical characteristics of an ICUT. These reference
tables contain information to set one to one correspondence
between IC Pins and IC Tester pins for an IC of particular
physical characteristics. It then prompts the user to
provide information about input/output and other significant
pins of ICUT. This node also stores this data to correlate
lCpin numbers in a test vector to their physical location on
IC Tester for effecting a test simulation.

Setup Reference Tables

This node is decomposed into six functions as shown in
Figure C-7. These functions are:

(i) Select Appropriate Table: This function on
receiving an input from keyboard, in response to a menu which
prompts the user to select one of the five IC characteristics
befitting the ICUT, makes the address of corresponding table
available to the program. Five different tables for ICs with
following characteristics have been prestored in the memory:
14, 16, 20, 24, 40pin dual-in-line packages. These tables
correlate the IC pin numbers to IC tester pins when ICUT is
positioned on the IC tester in a manner that pinl of ICUT
coincides with the top-left pin of IC tester.

(ii) Fill in Reference Table: This function prompts
the user to fill in complete reference table by inputting pin
designation and class of each pin. (e.g., to provide
information like pinl = k-input "I", pin4 = phi2 "C", pinl4 =
Vcc "P" and pin7 = Gnd "G", etc.)

(iii) Setup Input Pins Table: This function, scans the
reference table after it has been filled up by the user, and
sets up another array for pins marked as "input" pins.

(iv) Setup Clock Pins Table: This function, scans the
reference taole after it has been filled up by the user, and
sets up another array for pins marked as "output" pins.

(v) Setup Power/Ground Pins Table: This function,
scans the reference table after it has been filled up by the
user, and sets up another array for pins marked as
"power/ground" pins.

(vi) Setup Output Pins Table: This function, scans the
reference table after it has been filled up by the user, and
sets up another array for pins marked as "output" pins.

C-15

a) w

CL a

co :z
C". A C

_ - --) c.'JC

= w -4 C.

0) cc

Cal C.-~- Ma

CL 0)

ca - -02d.

Ci Iq CO

02 a)

4- 0~ - - r-M

a) .14 ca(UN

-E

cra

(U CI
a)Cr. 'N

CI-

-t

ca (

a. E- -rz

Node A231: Select Appropriate Table

Abstract

This node, in response to a given menu receives the
input, validate its syntax, and points to the address of
appropriate pre-stored table.

Select Appropriate Table

This node is decomposed into four functions as shown in
Figure C-8. These functions are:

(i) Prompt User to Mark IC-Characteristics: This
function offers a menu containing varied combination of IC
Characteristics (size, shape of IC and number of pins, i.e.,
20 pin dual-in line, 40 pin square, etc.) and user is asked
to make selection which matches the IC to be tested.

(ii) Get IC-Characteristics: This function gets the
character selection made by user in response to system menu.

(iii) Check Syntax of Selection: This function checks
the input for it to be within expected range of response.

(iv) Locate Appropriate Table: This function,
correlates the valid selection with the address of
appropriate table. This correspondence has been set aprior
by the programmer.

C-17

4' I-
WI

*0

=
.21
0I z

0
42
0

-~
~-)~W ~

02.-' C\i
00~2

0.

42
0 0

--4

00

* c~o 4Y~

I C.) 42 4

* ZOO) C'U
U42.-4 .2

I 0

C) I C)
0)0 4.'

- 0
0)0o tf~

0) C
C)

1
-4

C) I .2 C..
I 0 2.

C)'
42 Ci> I

0 0) 0) 42
0' 42 0
~42 --4 I 0 C)

____________________ 0 C. -4 -4
0.2-4 0) I C. C)

2. CT)
C) 0

C.) 42 C.
-4 C)

* *~%. C') 42 42* 0.) C)
0 0

42 .2 - -
0 -~

W
0

)~42

- - -~ I -
o *~

CT C)
C.~ 42

0

2., -~

&sJ
C
0
z

'C

Node A232: Fill-In Reference Table I
Abstract

This node prompts user to input pin designations (i.e.,
01, Vcc, reset, etc.) and pin-class (clock, power, input,
output, etc.) for all pins and stores the data received from p
keyboard.

Fill-In Reference Table

This node is decomposed into three functions as shown in
Figure C-9. These functions are:

(i) Get designations: This function asks the ;ser to
input designated name of a pin of the IC by giving a number
(for example, input name of pin I =

(ii) Get Pin-Class: This function asks the user to
input designated class of the pin (P = power, G = Gnd, I =
input, 0 = output, K = clk, X = don't care).

(iii) Store Data in Selected Table: This function
stores the pin designation and pin-class in the selected
table. This function is readily implemented in "C" language
by system library function (strcpy (Sl, S

2p

C-1

C-19 t

p

I I
I

~ij ~ ~C C>

C>
C)

I-.

-

C)

C>

CC . I c-C
CC C)

.2 Z C-C C>
C-'.-- < C)

C: -- ~ C-.

C) C)

C.); -,-~ C)

C)

C)
-. C)

C) I

C)

C-C C~-. P

C)

I

w
-I
I-.

I

C>
"CC

I
0
z

I

S-a i '

EC A rr t A te t ineFMA'L

I-Fr *-l.fl nuflj . 1 n] re[IA"L *, , text- n-ne_pD r

-7-,, 3 L L C 'o u5 m pe
- - M ra

zi I:. b m,-,n r ' b.a e -

. &, '. aL;L2T], F _ E Z[,ou-pin ta~le2,'], hlanrayr i0J:

r tb

ni u

ri t c -s F T n

. ,~~ ~~ -- .. riet r q , l,

, o u n t mee

t.a '. f: I =n n, iC : e

: L L
nr -, 'I n t opn s for r o nt infoula me

e I f oa n oe "

n o_ e t .t a " r -,

n -- ':4 tL LLe
:,: 7 a e t a c t openr e t i rr e s r n oucrime

en : r le) == re

:ri-F aCgul n t bp2 r, aD cd . I ,_ rname,;t

ss i rLr

t n e Ins'

non.>." (""0: acrosta"e,>t'Wa ntoetl ie snporoute)

rA atm'b5tT fl5'o2tF OutUiLc)

P :ntf "C,-,L~tctttoenoo.f'n'rs-.inn.roututrlel:

r i :e ', foot(nnlss: eo>
= =

:Y-

-:-s n>bAi '' frn 11e1 , ; ~ n n '-"'-i> 'nor a l -

7X -RACT TEST CA A

STULDENT NAME : SQN.LDP SALEEM
- C,- T - 7 2'7- 77'7A. . 7: 7'' 7C A -r 'TAT SUITABLE

- F -J S T E- F
ES:S AVSOR: COL. CARTER :

E - - E E ;CI- : ",I

P . h n-Dc,'u , con rn o ; t ne c- -' v i: ies of 3 t I ,tnar mo(Iu Ies.
n -t o- Iv c inoun.o uu'I t 1

4
is. yen: :orr3n 3n,: tes : data from /

:7'. "' -] _ it:' an ei :eL n O es of r u, ;/
, n, tin: wy nz tr int tm'n :on '-mm -: 'as. It Szo r_es .r a re;

n ' r : m Pq;-.,] r cn C l nt i:nc'2 = Ye z anc ,
_

it OLt n a

• i : rou & :,~c~u% f 1-as a-a val id *

w in" Ie- n,:,n. eof incu- __ S:2 1 fi1e>

a Si y r cvd_ ine line:
oi i mand 1 inel line)

*ta bu la te orimano_c- T a in-. n e

restructure nodedata); *

CALL 2NO -iF-OLrlE T: 'I

* None '

* n'7le inott EE2I fi 1.M. -which containn node daesinat~ons 2nd test cats.'!
D n- i E o up-U t 7i e i w'cn reztuCrrc test vector: from the given '

n, note ,-. toa are s to rerd F or I a- ,er n, .s u m -. o n .

• '.Eji , 7 71, K,: J -atO) taLz a e_t,_-v _,a a ,/

rIa- '-

*7:

S Z Z S O'. 2: IF E :M DATA I:L-E 7C A FORMAT SUITASLE *
FOP rNP',-T TO STANFORD TC TE-P- * l

- S V:" F COL H.?AR T
R

S : - : 2 n:4 SnT IPCD-E : November 3 ,3

A A22 :" cormo-Dn t o 3177 o tnhc u ac -u Ie-s.

* EZC 7 r i :; -oi u, ,ef n n es v3 i o ut. :orst.znt and z:tructures -on *r
* tne'r a n o n a uusecijent proqra.a */

* - E DiOCE: */7

* CA Lf N' AG[lE G i *

--- *

HODAES -ALI_- : his module is a part, Df al other modules. */

e- de:'F
-

r -M'A L I. PrO
el de i W3 TI EF

a" .f i rz! DE;bG A

tv ' ci-ar LABELE2D]"
-I: a ef rrc n S i DSWIATAEMAM:L I

- :ee sr i rjCt

LAEZL name;
n- r C a-:5

TES-DATA da t a vtg:

type e strcjt C

LAEEL p rmes ig:
int monner;
TEE-DATA p r, a ta;
; DA -A ;

_AIE testinout;

nt 1ol cw;
Snt (harce:

VEEDATA:

,W N norm in:
D " , D j 'c in ;
n07 'rP n:

T. 7 _ - -:q

nt - Pu :
nt

* n t - ;- I

nt in n t:

Int C %j'o n

nt in. , 19 low ;

nt n l 7n ;

int n I Count

nt orn Count:
1)-?"E

Appendix "D"

Program Listing of "Extract Test Data" Function

D-1

co

czz

-p-
C1

M c0
Ia. . M C4 j.
m - r. c

-i- >7 m -u
03

0

w -4

00

'4

0

Node A24: Validate Manual Data

Abstract

This node is activated only in manual mode of operation.
It checks for any overlap of input test data over designated
output/power/ground pins.

Validate Manual Data

This node is decomposed into two functions as shown in

FigureC-14. These functions are:

(i) Check Overlap with Output Pins: This function

carries out bitwise comparison of test vector to check if any
pin designated as output pin is not simulated. It generates
an error on detecting such an overlap and prompts user
tomodify his input data. This function is activated only in
"Manual" mode of operation.

(ii) Check Overlap with Power/Ground Pins: This
function carries out bitwise comparison of test vector to
chewck if any pin designated as power or ground pin isn ot
simulated. It generates an error on detecting such an
overlap and prompts user to modify his input data. This
function is activated only in "Manual" mode of operation.

C-29

I-

z

4-)

4
C

-I
0)

Q.> 5 :~ (Ni
~ CO

4-~ L-i-) ~ CO
0) (-. ~

4-)

C.
4.)

.0
CO 0

0.
- 0
CO 4~)

0 0)
~I)

4 0):
4-) (NJ 0
COC'20 ~ 0.
C) Cfl*~ 4-)

o C~O~ 0 I
0 C.)

0. 0)
0

0
0)

H

w
-J

0) I-
.0
CO

2-

C S
0-.

pC
0z

C-2B

Node A236: Setup Output Pins Table

Abstract

This node scans the IC pin table after it has been filled
in with pin-desig and pin class for all pins. It searches
the whole table to segregate "output - 0" class of pins and
sets up a separate array for quick reference.

Setup OutDut Pin Table

This node is decomposed into two functions as shown in
Figure C-13. The functions are:

(i) Locate Class "0" Pin: This function scans the
class-field of IC pin table and point out if it matches with

(ii) Setup an Array of Output Pins: This function
stores the first matched pin (from para i) as zeroth element
of an array and adds the subsequent matching pins. The
arrays are defined aprior in the system by programmer.

I

C-27

I

EII

CL4

-- 4

r0

CQC

CLH

~O-~ Lro
~ (Y~Lt.

Node A235: Setup Pwr/Gnd Pins Table

Abstract

This node scans the IC pin table, after it has been
filled in with pin-design and pin class for all pins. It
searches the whole table to segregate "Power/Ground-P/G"
class of pins and sets up a separate array for quick
reference.

Setup Power/Ground Pin Table

This node is decomposed into two functions as shown in
Figure C-12. The functions are:

(i) Locate Class "P/G" Pin: This function scans the
class-field of IC pin table and point out if it matches with
"P/G" .

(ii) Setup an Array of Pwr/Gnd Pins: This function

stores the first matched pin (from para i) as zeroth element
of an array and adds the subsequent matching pins. The
arrays are defined aprior in the system by programmer.

IC

I

I

I

C-25

I,

r,

Iz

00

- -4

C))

, _. . 0
* ~0-4 .~-; -

C\J-C'

C)

,--2

• . -. - . .' . . .

9C

Node A234: Setup Clock Pins Table

Abstract

This node scans the IC pin table, after it has been
filled in with pin-desig and pin class for all pins. It
searches the whole table to segregate "clock - k" class of
pins and sets up a separate array for quick reference.

Setup Clock Pin Table

This node is decomposed into two functions as shown in
Figure C-1. The functions are:

(i) Locate Class "K" Pin: This function scans the
class-field of IC pin table and toint out if it matches with
K".

(ii) Setup an Array of Clock Pins: This function stores
the first matched pin (from para i) as zeroth element of an
array and adds the subsequent matching pins. The arrays are
defined aprior in the system by programmer.

C-23

L~J

z
ro

-4
.-

E- -

HH

4--

cC CL a

CL W

Q)q

C3.

b-,-

.,--t

...) CC c -

CC C'"CM
C) C) C-. ~-A-)
0CC 0

.. . . t' ". " _ - -" ' ' " " . . -'- - m,' .. ,i n~~ i m .. , ,,- -. ,i~i ---- .-".-

Node A233: Setup Input Pins Table

Abstract

This node scans the IC pin table, after it has been
filled in with pin-desig and pin class for all pins. It
searches the whole table to segregate "input - I" class of
pins and sets up a separate array for quick reference.

Setup Input Pin Table

This node is decomposed into two functions as shown in
Figure C-10. These functions are:

(i) Locate Class "I" Pin: This function scans the
class-field of IC pin table and point out if it matches with
I"

* (ii) Setup an Array of Input Pins: This function stores
the first matched pin (from paragraph i) as zeroth element of
an array and adds the subsequent matching pins. The arrays
are defined aprior in the system by programmer.

0

C-21

L

V~~~~ N 1 7, y1 L I ZI.-r~~--*-w9w~ Er.rwrrrrrrr

_NIIT ITAL IC EZ *1

- :2:~ LAST UPDA-E: Novemiber 4. 19B4

---- - - ---

3 * 17- -: n)-alzes all variables aefined in the main ~

*---- - - --

(-- --- *

A,- "nDT- *clIkptr, *out:Dtr;

entry,, = (tpt ->nronpin:
Outotflr ?tptr)->outpin:
npt-r = tptni->-npin;

fp- f nalOI
I 9t'} fl cOLnt=0:
f p r- c:Ik ,cunt0=J;
fn ' - -)u t - c u n tl=Y;
p s econct _t neO:
~p -)aga-n0Z;

ffpt) ,on chcff;4 'pt nId-sty count09;
f r -ver -l1ow Or;
f rilc ojurt = £1

fr) >tart 1:

mm r -. r r-ount =0;

D- 5

F U N C T : 0 '- F*-

STUDENT NAME : SON.LD.SAL EM
H -hES:S PQUEO T: CONVERS OrN OF ESiM DATA FLES 70 A FORM.IAT SUITADLE *

FOR JPIjT TO STANFORD IC TES-ER
* -HESrS ADVISOR: COL. H.C:ARTER
7 DESIGN CxTE: JUL'" 4 .29U;4 LAST UPDA-E: Sectember 6.1984 *-

/ * -

-ESCIPTCON: This file contains a number of sms' utility modules used *

b y --- 1 1 :ther mouL osa. *
--- *

* SEUDO CDDE: All rooules are unr!IIated :o eacn ore-. Tre pseudo coce of /
Ca::- m,: u I a s L e en annotsatae n int :,jn eaier . /

i incuce ief.n'
in uce -;tino.h'

D-6

... . - 2 :

N 0 T _ BL A N K _ L I N

*-_

CTUDENT 'AME : SC.NLDR.SALEEM
HE::S POJECT: CONIVE'SO OF ESIM DATA FILES TO A FORNAT SUITABLE

FOR NPUT TO STANFORD iC TES-ER /
* Vs VISOF : COL. H.CARTER */
r DESION C TE: JULV 4 19i;4 LAST UPDA-E: Sec-t.ember 6.1984 */

* SADT REFEECE :

'*DEZCTIPT:OI: This function checks if a 9 yen cnaraczer string is blank */

or not. /

)S UDO 05D-: */

while -;Ei = '\Z' 1 *1

if C alphabetic C s[] *

' * answer =1:

break: */

7'* */

returnl(cinswer): */

CALL:NG kRGUMENTS: /

s: :nar:icter array, whose status for be'rg 'blank' or otherwise is to */
be Jeter m i ne. *

* MODULES :ALL-[: */
al phabetic(): */

mnt not _blank _lire(s)
char s :

in i=J. answer='. true=!:

wn e " l = 'sC I

if I true

* alp obotic - s[C]

ans 5ner 1

ret.urn an ./er

D-7

,.. ,,.. ., , . ,., ,.. . - -- ' - " "-- -' - ''-

C 0 P Y C H A R A R R A Y

STUDENT 'IAME : SQN.LDR-SAL-EM *
-HES:S PRCJECT: COVERS ON OF ESIM DATA FILES TO A FORMAT SUITALE

FOR INPUT TO STANFORD IC TES-ER
- HES:S ADVISOR . COL. H.,:ARTER *
[' lESIGN :TE: JUL 4 .1984 LAST UPDA-E: September 6.1934

/* SADTC T ,rEfHCR . :
/*--*

DECC?!PT:OrN: This function cop is one character array irto another. *

'PSEJ D C:)DE:
* for C i=0: :rom[i] != '\ ' :) *

*to[iJ ;: from[h :I:

1 -CALL:NG .RGUNE NTC S
' from : charzcter array from wh ch dat is to be copiec.

0 o char -cter array into which ,-,a-s is t o be cop i-c. /

M*,ODULES ::ALLE[:
none 2

:ooc,:har _a-ray (fror,. to)
cnar f-om[j. to[];

i nt i " .

for (i=0; fromE i] ' \0': +f)
to[i = from i I;

to[I = ',J';

D-8

--- - -

C O U N T W O R D S *

." STUDENT 'IAME SOI.LDR.SALEEM F.
-HES'S PkOGECT: CON;VER, SION OF ESI DATA FILES TO A FORMAT SUITACLE */

FOR INPUT TO STAN1FORD IC TES-ER */
' HES:S ADVISOR : COL. H. CARTER */

" DESIEN ZE-TE: JUL" 4 .19B4 LAST UPDA"E: Sepcember 6.1984 */
SADT REFEREiIC */

* DEEC. IPTION Thi; func-)n counts tne nurber of ,or,cs icr a given /
c n-rac .er ztr ir . *1

*---*1

* DC SE I E: */
* I - 0; string [i] != '\Z' ++i */

* if aiphabeltic(stringli)) */

if look i:i 0 .or word /

"* " word __count; */
look noforword = 0:I

* * *I

else */

look'ng_for _word 1; */

CAL L NG L4RGU:1IE NTS :*
* strng: oharact-or arra, in wh'ch number of woords is to be counted. */
-- *
MODULES :ALL-[: *1

*" none */

nt countwrrCS (str -)cana cnar otrcnrg[]:

int i 1 co:)kin7_forword I word_count Z 0;
for (i = J ; st r i nc E i] = '\ • i)

if aI-snabet 4c t ringE

@1 if I "ookirfcr word)

+ +v,: r d _ c unt
i nc-no or _word = 'I;

el s_

00 no *'cr ,cro = 1-

ot'Jr V, r ' cuntD-9

D-9

S .- ..

- < . .. " ' ,
-

- , _ . . - * " , . . -,r *. ' -% i% % .-. . w r'r - -.- g- r- " "

-:_

E Q U A L - S T R I N G S *

STUDENT 'lAME : SQN.LDR.SAL EM
-HES:S F']EIT COINVERS:ON OF ESIM DATA FILES TO A FORMAT SUITAL,

FOR INPUT TO STANFORD :C TES-ER
-HES:S ADVISOR : COL. H.CARTER */

:)ESI ;N C-,TE: JUL' .19N4 LAST UPDA-E: */
, AST REFU-RECE: *I

--- *
/I DESC. I PTON Th s funct on determines if two giv"en character strings

"* are ecuia!

'* PSEUDO CUjDE: */'*vnile({ s'[iJ = s2E iJ&&asi)]! "',,' && s~r i) 1: "'>' */
*' t"l i: */

, II' 1] 511) == \0" GA a2l J -- '\fJ') */

* ~answer =-:*

, se we
anwer) *

/"CALLING kRGUHENTS: *

/* sl: character arrayl
/* s2: character array2 */

/* MODULES Z:ALLE[: */
$/1* none *7

in: eaual_ strinas(sl. s2

char si13. s-[1];

int '= . answer:
wn le sifi == s[il && [l) != '\' && s2i] = -\0'

i *: == ",' G s2 I = \z"
answer : : 7* strings equa */

e 1se
answer J U : /* not equal

retur n ansier

D-1O

Ii

_l-d

*-7/

"C 0 P Y S T R I N G A/

* rU7fj "lAME SON.LDR.SALEEM */
S-HE1:S P-,OjE.T: CD:JVEPS:ON OF ESIM DATA FILES TO A FORMAT SUITABLE */

* FOR IPUT TO STANFORD IC TESTER */

* HEC:S -:)VISOP : COL. H.CARTER */
?:N ? J,TE: OUL' 4 .19134 LAST UPDA"E: September 6.1984
;ISDT PE=FRE qC r:

*--

* [ECCIPT:C : 1
his function copies a character string from one buffer

Sto]nctner ,ufer /--- *
* :' Z:} ,12CEC"

for 1 -f.om != -n' : *+from. +to 1 */
-oto ' "from; */

" *to = ,\""*
*---

* CAL LNG 4 RGJMEN1T : */
fron :c Dinte r to a cna racter string */

* to DointE'r tc 3 cnar-acter string */

--
rMODULES :ALLEr 7 I/

None *I

:op!,_sz-" in,7 ,'frc, i. to)

ar r m ,
t o-.

for : from '\n' : +-from, -- to
*tD ' from:

to 'D'1

D-1 I

E TP, A C T T E S T 0 A T A ETC)*

m~E:S ~occT: CONVERSION OF ESIM DATA FILES 70 A FORMIAT SUITABLE
FOR 'INPUT TO STA:NFO7D IC TES-ER

E ADVI-or: COL. H .C:A RTE R
E* :;S); JUL" 4 .1981 LA ST UP DA%-: Sect ember G.1984 *

ECC2N: Chi s functi on deter i n-2s i f a c i ven c:haracter i s a lphabet i c
*~~~ :Sil CE:

a z oqhtet i c;
*---*1-

* ALL:- NG -%RCU>-IE NTS :;*
-C: cncwacter va-riable.

*--

* IODULES 'CALL7 SE:

'nt almciab' tic 'c)
ch-ar

if: (c; &c<z lc>A c<2 1lc IIcNW c=')I

return)

D- 12

7TA BUL A TE C CuD D DAT A

CTLD~t 'AMB SON.LDR.SALE-EM *

THE:-.S 0 CONVERS .ON OF ESIM DATA F:LES TO A FORIMAT SUITALME
FORP, NPUT TO STANFORD IC TES-ER *

P' COP:COL. -l.ZARTSR *1

E -N CC 7"7 JUL 2 19114 LAST UPDAE: November 3. :934 *

P7 : N :7 Th z- nocule:. on receiving a command line fr-cm E-SIM file. ,
p .input -,ins and clock- *OciS 1 n 5 a qererttes 7,n -rr.3, of outzput pins 4iron the availab'e pin ~

r c ;-mrna I ne

f 1st letter of cnd _ Tne(wl *

* et _p) ars' , of mon tor-ed___ons.*
- ' Las letter of ond _ inelV)
*seTup arra', of input _:i ns.
* 17 1Ist letter of onmd ine(K) '

setcup arr-;,/ of cloc!:- _i n s .
1letter of cmd _ Tnel)l*

set correspondence between arrays of input/clock pins
and elements of mo n it-o red tin r ra y.

Cno-r-r-ate~z a rr ay or o u tp ut _pins .

f1t letter of a-nd- (HrsR)
i 3nor 'i.

i f 1si. letter of cmrd - ma(An y other a&ph-ibet) *

CALL- proes 'handie remaining commands>

). ~~~ tptr : oi-er -to type TAE -. which contains pointLerstodfent/

fpmr : ooi -ter tot-vce IAPAMETER. a table which conta ins all current

c "olie A ;.ce,:tline ea fr-on ESIM f-le..an array of characte:rs. W
- rctr- otintitito araoy of test vec:toragnrae cr-on oca data

Quint: 77: .:,int r to <ia 1 n whi reor-eedaota is being stored .

' Qazfis~a'torralfile i'n which -eforniattad cata is Stored.

- --
* 11CU-z "ALL E *

* "eun '90 a--sl

c iea -n:p n arrayi';

in rrav H

ii~ _ np ni

in~~ n -- fi Cnini r-i a: n de int ion:;
'tic

D-13

int tacalate_ ono_data(tptr. fptr, cnd_ line, simptr, outfile'
TA52L E *tpart
P. 5.A M -

7 P, *z7t~r*
cra r (:-d_ - ne I

ICP:N entrv:
DA-A 'sirr n, t clk'n, 'outntr;
c har :h;

entry (tntr)-.monpin; /* pointer to aryof monitored pins *
oucpzr= (trcr)- ouopin; /* pointer to aryof output pins
s inmin =tar-np in ; / p ointer to aryof input p~ns *
c Ii n = (,:tri c 1 kin:I pointer to aryof clock p ns
cn cmd-I neE--

ati ton, n

i- and linel =

if I fptrl->second_time Z=£

N count-wordascindline):
(fpt r i- > MUMMON P IN = N -I:;
creazte-monpin arravientry, cmd_ line. N-1):
(fptr)->second_time =1:

E. 1 Sea

(fptr)->second _time Z;0
)fptr)->pin_ chg=

b reak

case
V r ieE3=

create inp n arraym fptr,sinin,cmd_ 'ine=Y
break

c:ase 'K '
if (crd _linefi)

crea,.te _ciknin arrsy (fptr,c&kin.cmdI _ ine);
b rea k:

c:ase 'I ,
if ((fptr)->,init again == 9

m arl _ npin' fptr~entry,simin);
mar) _ :lkpin)(f-ptr.antry.clk-n):,
maeria r aae~outp inar ray(pr entry outptr)

(fpr~-int_ scam 1:

brraL

tmc _ ncE: = isc -- ir~outf I e)

D- 14

1

C R E A T E M O N P i N A R R A Y

* */

/* STUDENT 'JAME SQN.LDR.SALEEM */
H -HES:S PR1OJECT: CONVERSION)F ESIM DATA FILES TO A FORMAT SUITAFLE */

* FOP "iJPUT TO STANFORD IC TES-ER */

.* HES:S "av'SOP: COL. H.CARTER "I
/ D NES IN C:,T-: JUL' 4 19. ;4 LAST UPDA-E: Novenber 3. :984
'* SADT RE-: RETICE A-. C2 /

* DESCIP':ON: This module. on receving a command line wiTh command~w) */ S
Se:uz ar of mon tored pras and stores The number of elenents *

* in -.his newy creates 3rrav in program parameter table. */

* S EDO C */

" ~ f w'_:ommand line n

for (= . it= number of monp~ns: i', */
monp n_3rra i .name = ge-.next_word)stg (*/ 1

* CALL NG 4iRGUlEHTS: W/
* entry : pointer to arra,/ of mon-tored p'ne. */
," stg : 3 te>t 'ne read from ESIIA file an array of characters with I

its first letter as 'w' /
' numoer: an irtener, numoer of e-ements in array of monitored_pins. 'I

--- *
1. MODU.ES :ALLE[: *

copychar arrav): */

r e't_-ionF narrav(entrv.stg, number)
ICFIN 'entry;
char st :]2;
in nuirser:

St i , G , k=. double_biank l:0 an ar io,:alL2£]

.or) 2-2: stgi< ' \ ; -+j

i' § apna:,etio) sto.qj]))-,

Tocal"iJ sts?[J]:

cous
5 ?_biS:nk = 0:I

aite p n stg. == ' I

if (soub- _blznk = ;j

coca'>.f = '',"

co,'_*:.ah-_ar z: v -ocal I Centry-k)-,name)

'icuc 's _ an;,

c'- n 'r__l" c.') loc0qa l .)(enti //)->name):
:r rf. i ru b r: e i

S
nrtr u - clasr 0':

n , +)- las:;_ref N OREF:

5

D-1 5 T

.

* C E A T E I N P 1 N A R R A Y

0T10
' ,
.. ..qI! ."C N.LDR.SALEEM *1

S 7-0"7-: CONVE ON OF ES:M DATA FRLLZS 7C A
7
0P'.AT CUITACLE

FOR TNPUT TO STANFO, D 1C TES--ER *
'-/':S V C .L H.:ARTER *

N 7 JUL' 3 ,;4 LAST UPDA-E: Nove-ber 3,1984 *

* _ T;s mo,tule. on rec eving the zirst commanc l ine with
mmar up an array of nput pins and airte,.arcs aces all pin
,' rt:; ' :nzi ne wly :re- ated !r :y in program pa'amer, r table. *

- moer f l lmertaa reac store:d in m _ -rray.iTh"s
va ce 'n't al ised to zero at start of pro-r-am). S

* f 1 '-- _,commandline

inp rarray[K+i.nane = pinnate (from sg.. input parameter' 1
inp r -rrav;ii.aoa =pin ,zata (from at;.. input pa-rameter,

*--- 5/

* CA L - NG . R G U','lE I TCa I/
* ~--r pointer to type PARAMETER. a table which contains all current */
* pro ran parameters. /
* smin: point er to irra, of input pins. 5/

SsT a te> t :ne reac from ESIM file an array of characters with */
its first lett:r as 'V" S/

MCCU'..ES ALLM :/
:lone

re 'no'"arcayi:ptr,sim n,stg)PAF, A N -:-7 R lfr .-. r •

DA-A imnn
hzi r .3 g E

k f:t ir - ir count:

'p in des g IfI st C j:

r.r ' s'L[i :

D-16

S

C RE TE C L K P :N A R R A Y

* /

S T/SPT 'lAME SON. LD . SAL EM */
-O-- -:S O C VEPS 01 OF ESIM DAA :LES C" A ORM!AT SUITASLE */

FOP UPYT TO STANIFORD :C TES-P */
* - - :)Vf no' H.t:APn- */

* ;ES>N T L' I:4 191(4 LAST UPDAE: November 3. :.904
* :: ZI ,2E HE:' - 122

* P3,;: In14 i; modu e. on rec-eving the command 1 ine witn comniandiK) */
* -et u an arrav aF clock pins -ant a3dds all clock pin names arc thier /

i--: t :ta -n this array. "t also atores the number of elements in /

* a t-n':e roagr:im -aa t ta b e±.

* f ' m omaid l ne */

4 ,i Ie not eoln */

* r: et ne-t -wo-d; *
c i, :n n rr aE i] name = nextword (from st.. input parameter */

- retrnext wona: */
* (4 ipfnsrra-L[ioatc: = nextword (from stg..input parameter ,/
* 1*i1 */

*/

* C _ P i :P : .I rT */
--

5
* 5A - ~ I !- FSlE N *

c; : o-.ter to type PARAMETER, a table which contains all current *7

cr :,c r r :,ar a et er i .. *e

c' in: pi t -r T.o rsa of clo -ns.
- ne read: from E i e an array of characters with /

* itsert !ettar a s ' *V

* YODt' EC -AL : * /

p. :phabet i : *

- e:: l '-n_ r ytzt.: l-] in.atgi

Q . - z n .

- - ~ r :

, ., ? : - ,D 1,

1)-17

* 3 :2 N E " A 7 0 U 7 P I A R P Y:,'7"

. . ..7 A.E : .,.E'-... h.?J ALR P A Y */

* -,E I =:.S'- " : .S :I+EP. L0I F E.:IP :A.TAL CTLE3 - A WOR.AA:.T . :ITALLE "!
,STAF,.: IC TE ER "*R

9 L-T' UPC;A- : Cc--ber '9 1118 *t

Lho i n s e ,, a :i , o- mon '- eo : _- Ond :neta up */
* a :..ga :: Eft:':2 1,c :,t2 n lmay ,:©i: :Lt. n<7 or ,in: not marul as '1

" " 2 _7: : L :3 :*107 --, n- rio- ma c a

num: r, eee rrls in oncin ar ,; +r a i v

f asm,,n input or c oc . W/

L t;: r _a-ra3,v monpin eiemen+L]: *t

- -- -*/
P G r.!E 'i7S

* -rzr :o' ' er to ye PAf,1ET.R. a raie whicl cont ains all current *

* - r-:ic r , : r met, -ar .
e a "'.: oi tar tj, -- r , of mon t o-ad p-n . *

7.:.tr: oI. 'er to ar-a;/ or ou out -,ins.

" CDL_-IS -_ALL_: : *

-cory_,-ar_ar 3vi 1: "*

]eer- autp i n _ :r ra:II ftr, htr ' , outot)
e r rH --- 0 L or r i tr nt ,r

t, 0 LJ

-2 ri~ re .D o u t,:t~ t r s 7

NI'-7

', t. L.' f 0 "C 5£ C= " ' I

... .. ,r 1:: t_
, =

r : '4 iI- 'a n . o t'tr.V : 1n_ c

- j n - n r

I . .- - - - -- - " " , I: I i7,

* CHANGE _ S T A T U S _H L C M D

* ,J 1T - '171 A r 1 0 . R SALEEM
* -H S::O T CO;VERSON. OF ESIM DATA FILES TO A FORMAT SUITARLE A

FOP :-PUT TO STANFORD IC TEC-%R *
OP-HEC'S !::VISJF COL. H.ARTER *

* E ,T S 9t: 4 LAST UPDA-E: October 2 3.1184 *
* SAD RE:22 .. present y not inmlemented . . .

* rE7 -T P T DrI: Th 2 module on rec eving a valid 'hi--:md' restruc:ures the */

pr. lob1- 3 lv -i ace node dat into test vectors, stores these vectors in */
an it-n i'', 5n :n:nges the status of efFecte, pirs b' f i 1 inc in */

tner r esD' l ,e uifer:; wih ', or 1' dependingc oi 1 or h' command

ve '. *I

* ;'SED' 'EDE: *I

set cta -t Z if '1 cmd */
* 5et sta-t = if 'h cmd

:,r Z number of elements in h l_.array: ++i) */

* for J=Z: J!= tota" number of input pins; -+j)

* if C hiarray_elenentli) = inpinarray_element[JI., */

f ill in respect-ye buffer of inpinsrrav_element[j] A1

witn Stat'.

celete crosrer with array of monitorec pins. */

* e /el

add new element to inoin array (hT_arry_element[i] */
A fill in respect-ve buffer of new_eiemert with 'stat'

in- court = pre!vious in_count - number of new eIements added */
-- - - - -- -- A

CALE:NG PGUIIENTS:
-tp-r : ointer to type TABLE, wni.ch ,ontains pointers to different

pin arra ys. */

Dointer to type PARAMETE,. 3 table whicn contains all current */
* pr-,cr m paramei ers.
* -' rr ' c -, ' r o ai array set up in cal 1 in,:i routire to store

ere nT3 re ievec in 'n or '' comnand line.
* :ou r r giv ng number D f words in hcmd_ 1 i r e

I : Cr lag 'or n or i :ommand line. /
or r p,:,ini !r

-
" o ar-'ay of test sectors lerierated from node data.

z ou-£! : p,:,in '. r t _- fie. in wiiicn r,_formatted cats is being stored.
*---Al-

* 1 Cr -LL _-T :

* rT~-enal ', lotD imol<:enedi */

TDt) m-I d

'I S

*V A L D A T E C M L I N E

,7[L!.'r- T ";'AME S SQ'i. L DP..SAL 7EM *

-ERS'ONF It ATA FILES TO A -OFAAT SUITACLE */

FOR iPuT TO TTA:FO.D IC TES-ER
C LF CL. H. ART P/

Septr ,1384 LAST UPDA-E: Octcuer 25, 19G4

*"r C" IPT ON: Th s modul1 :necks if the given te :t line s either h'

* ,nr l omlrrd -ne. It ignores all other tetl nes receved from */

EC:! f e . It. ,er ti u Iar I :a nee s a ainSt anotter . ine :ormat, .xnla n

* 3 Z2OLC'' srts ,ith hl 1 ou' n.a'tu1l ,:escr ibes different node! in

* ni> or low -Eta-L. */
*--

* E :1)23: D/

I f r et-mer- or ,-har.strin. is *h or I' */

* line = val id 1 ine for :Inea,, n further.
if K valid 1 ne) */

X = strncrp(line "h inputs:" 1: */

* = sT rncrip(line "h inputs:" 1: */

if (X == 0 I I Y ==
Sline = invalid

* rEturr, 1 ine validity /

' CAL NG k G R UI EITS: "/
st; : cara rter array /

--

' MODULES SALL :
None */

nt 'a3 aIate a_ i ine stgl
cnar s-z .9

int x ,..P =J:

c na r :Dtr. *lpt.r:

nt r = "h nun ::

iptr = U1 nou:

-- = 'h' I s1~:' I

= atr ', zt tq. hotr, 9 ,:
- t,= "" cmD '. I ptr 3 I:

i x == CI [I ', == 'S

p = :

: ... -': ' n, i n rc...................-c)

rr 7> ' s no s
r"~ ' "c"' l id - " ne ,% n" , t'l

SI2

*/

S C R U T H L C M D *

* STUDENT 'NAME : S0(.LDRSALEEM */
.S P . CO;VERS:ON OF ESIM DATA FILES TO A FORMAT SUITABLE

FOR NPUT TO STANFORD IC TES-ER */
-HES S ADVSCF: COL H.CARTER */
[DESN 2 - T7: Sept 3 ,19534 LAST UPDA-: October 27. 1984 */
SADT REFRENC.: AI231 */

-- *
:ESCTIPT:ON: Th-s module validates the 'h or I' commanc line by cnecking /

* tnam nc eiemEnt of 'hl_':md _ line' has 3reacy been designated as output /
Spin. it aenerates an err-or message and aborts the program. */
-- 1
* DE2 0 C DE:

Sor 0 i=O; i!= number of eements n hiarray: ++i ,/

for I j=,0: j!= total number of output pira: .j +*/

if (hl _array_e'ement[i]= outpin_arrmy_element[j */

hi :orimand = nval id: =/

break:

return(hlrmd_status 1 */

* CALL NG kRGUMENTS: W/

* outptr : pointer to array of output p'ns.
' hiarra : pointer to an array set up in calling routine to store */

* lerentE recieved in 'h or ' ' command line. W/
* ou-coLnrt: irteger, 9iv ng number of elements in array of output pins 1

hicourt : integer, giv ng number of words in h'cmdline W/

* MODULES CALL-E: */

b s "* strncm rD)

-crut_hlcmc? outrtr. hlarrav, outcount, hlcount I
DA-A *ourptr, *h'array:
int outcount, hcount;

inr i, . found .O:

'or (i>0: i!= hlcount; **-

or ,' j=!: j.4= outcount: *+j)

strncmo(hlarray+l)->pin desig,(outptr j)-)pin_desia, 2ZG)==ZS

pr 1 1 rI kVALID PIN : hshlarray - pin _ :esig);
or n t '

is n the ist Of output' pina. n'

D-30

- -7.

M K E H L C M D A R R A Y *

/1 STUD-NT "1AME : SON.L-DR.SALEEM *

HE-HFSIS P-'OJE,: CONVERS7ON OF FSIM DATA FILES TO A FORMAT SUITAELE */
FOR, NPUT TO STANFORD IC TES-'ER */

-HES:S A)VISOF: COL. H.CARTER *
/* DESPIN C:kTE: Sept 8 .19,;4 LAST UPDA-E: October 26. 1984
" SDT REF:REiCE: A 1231 */
--- *
2 DESC2IPT.7ON: This module sets up an array of- pins incluced in 'h

or 'I' ":ommar, d "ne... whose status is going to be charged to 'high'
or lavA */

--- *
PSEUDO CDDE: */

for (t=G; i!: number of words in hlcrd_line: ±+i) */

ietnext_word; */
hlcncarrayelement[i) next_word: */

,*CALL:-NG 4RGUMENTS: *
SAhlrrGN : pointer to an array set up in call ing routine to store

elements recieved in 'h or - command line. */
textline: a character array.. .a command line read from ESIM fie. */
hi,-ourt : irteger. giv~ng number of words in h'!cmdline */

--- *
M MODULES :ALLEC,: ,1

None */

ma ke_- lcmd arrzy(hiarray. textl ine. hicount)
DATA *harray;
char textl ine[I:
-nt hicount:

int i . j, k. 1 . b'ank2=1;

for I j=1 : text 1 ine~j] VV + j

if L alshabatic(textline[jl) %

(:lar-ay+k)-,pin_desi:;[l J = textline~j]:

blank- = J:

f te..i n:!EI 2 blank2 == Z 1

a r r : y -!< >p r ,esigL 11 = \If'

1 ='1
bti lc- k Z ''

h n- J ,i . , :s i , E " I ,j ,:

r i i coun

*1

1D-29 N1

. , .

int. and-mcmd(tptr~fptr~sty.simptr.outfi-e)
7AB6LJ- *tr:)tr;
-AR AIZ7EP R fptr:

.E C DAT7A lsin~tr;
F:L E *Ci tf i 16:

DATA linpt-r, loutptr. *hlptr:

ou tc tr (tptrt->outpin:
hilpt'r I t ptr'-)h-rioce:

L =fpt7)->,Di_ Cunt;

P :ourt-worcs(lstc) - 1:
val ii = oal icate_ id jfl(stg
f (val d == 01)

printfl'is a va-d line: 's\n'. stg):
make_ hlcmd_ arrav' hlptr. s-rg. P 1

for(i=0: i! P: 4-i')

print"(" '.Ed %s\n..Ihlptr-i)->pindesigU,

if IstgESJ == WN)

eml 3e

if Is--rut_ hlcncloutptr. hlptr. M. P)1:

returnlerr I

D- 28

* HANIDLE REMAINING COMMANDS *

,' STUDENT -A-E S Q, ,L R -SALEE -/
S, : O S DATA FILES TO A FORMAT SUITABLE

.'* FOR " NPUT TO STANFORD IC TES-ER *
-H C S 'VISO£ : COL. H.A/:

E - k E: . . ARTE
*)E~tN :,E: Sep,. 2 1'"4 LAST UPDAT7E: October 25, 1984

* HADT REDFE RPAEINN : CM MD*

.)DESC !P ON -'i 'oll n r c ig a other command except(wV,K,I *
* and R ignor.-s n'.1 otH.::rs . .. preser tly...and processes 'h or I' cmd *
onl y,. I '. Cnecks the val dity of the comriand- and changes the status of *
effelc ej p ins .

* if17 a h-cmd or a 1-crid)

* */

* change node data 'nto vect~or form- /
wrte out test veSNors To externa file;

* mai-,e arrav 7 of pins included in 'h or I " command 1 4ne- *
* scrutinize hl-commands for its va" id ity:/
* change status of effected pins; *

* CALLPNG ORGURENTS:O*/
t p7.r pointer to type TABLE, which contains pointers to different *

* pin arrays. *
fp:r Apointer to type PARAMETER. a able which contains all current *
i prorSt parameters. L

s st': A te>tlnre read •from ES:M f=ile..an array of characters.. an *
* ETh or 1 command einec/

a i -l nrr : sointer to array of test vectors generated from node data.
oufile pointcr to f e. in whic re ormatted da a is being stored. */

*FILE US-D-

ou-fil: w : e>ternal file in which eforutated test vectors are stored.*/

/* MODUJLES -ALLEE :
mae hrraf pn i i h r 1

* scrut h hcid() sd*/
* change .st: t.u.s hlcrd(. ... presently not impemented.*/

-:includ- "std io.hq" *.1

1* pn aray. a

D- 27

/* ptr: oinerto yp PAAMTER atabe hic cntansallcuren *

..... pro.ran parameter. , *1 , : - - .. ,.

0 r~ 1itr+j "->monrz2f:
(siniptr.-i)->Itest_ input~j1 (entry+Q)-)datastgls):

els3e
(si-iptr+i)->test_ inrput~j) (inptr-+j)->'pin_datai;

for Zj=l; jltM: -+j)

0 = cutptri#j) ->monref:

(simpt7.i)-ref-ouzputt.jJ I (ertry+Q) ->datastgE JI

is simotr+'->rc-1low =:

simctr+-)-fl-ane =£3;

(fptr-)->-rn_:cunt N:
if (:fptr-)<Zjin I

(s iptr-fl-1)>fol low =I

D-2

I - - i- 7.- -

SC 0 N V E R T N 0 D E2 V E C T 0 R *

* EN T WAME : IN.LDR.SALEEM

H -EZS P'AE C I .O5VERS:ON OF ESIM DATA FILES TO A FORMAT SUITADLE
* FOR -NPUT TO STANFORD IC TES-'ER W/

*" -HE:C AL;VIC, : COL. H.C:ARTER W/
* :' ugu : 28. 984 W/

S .N -TE Aucust .8, 1984 LAS- UPDATE: October 2Z.1984 *I
AD- 2E- :C: A1222 /

- 71 Th - modul scans the input array and forming an array - /
s i no ,f ucta str ng associated w'th each input pin each data /

* st-ins- itse an array of charactersit transposes the imag'nary */
* ram - :nver t node data into test vectors. /

--- I

* POEU 'CDE:
* M = nunLer of elements in array of input p:ns /
,- N = size- of cata string associated with inpinarrayelement[]/

,* f-zrm an imacinarv -iatrix ot: size (M x< N) with its rows as *

data str:ngs. W/
Ta, a tranopose and resulting in a matrix of size I N x M)

where, N. is now number of test vectors and M -s size of */
,'*' each test vector. *I

,' CALLING 4RGUIENTS: */
tptr : pointer to type TABLE, which contains pointers to different

pin arrays. */
fptr : pointer to type PARAMETER, a table which contains all current 1

procram parameters. W/
,'* simptr : pointer to array of test vectors generated from node data.

/* MODULES 'ALLEC : W/
/,'* None

I onvert-noc-2_jectortptr,fptr.simptr)
TABLE *tDtr :
PARAM-_ETER *C.t r
VECDATA *si np t r:

'nt i .j L.L :4..N.P.O:
C7 ! :: "ent-y:

DATA linptr, loutptr:
cnar "ttreap

entry = tptr;->nonp~in;
-nptr = tptr;->-npin;

outpt:r = tptr)-,outpin:

K = fptr)->NLM_ICORIN:
L = fpt- 1-> ir _ c)unt:

7i foar)-oLt _:cunt:
=; : tr'i;n(c,.ncr:)-<'data stg):

tor =r: i = : .)

for _-= . j --. j

rpt D-i- moarraf 99

D-25

r -/

C H A N G E D A T A S T R U C T U R E */

/* STUDENT NAME : SQN.LDR.SALEEM /
/- HES:S P".OJECT: CONVERS.ON OF ESIM DATA FILES TO A FORMAT SUITABLE

FOR INPUT TO STANFORD IC TESTER */
* -HESZS ADVISOR: COL. H.CARTER */

/i DES:2N ChrTE: August 18, 1934 LAST UPDATE: October 18, 3984 */
/* SADT REF-RENCE: A12 3/
--*

:D DESC;,IPT:-OI: Th-s module singles out the input pins not included in the */

ar-,y of monitored pins and extrapolates the data associated w'th these */

pins to match with other monitored pins. It then -hances the p-n noce */
7'* data into test vectors by call ng 'reformatnodedata' routine. '/

'* PSEUDO CDDE: */

for i =j: i!= number of input pins, +-i) */
* */

if (inpin_ar'rayelement[i] not a member of monpin array 1 */
7* {*1

N = size of associated data string */
fill (N to buffer_ size) places with (N-')th place data */

1* }*/

/* 1 -/

/* charge node data into vect+or form (convertnode2_vector) */

/*---
CALL:NG -4RGUiENTS: */

** tptr : pointer to type TAELE, which contains pointers to different *I

pin arrays. */,,'/ fptr : pointer to type PARAMETER, a table which contains all current */

. inptr :procran parameters. */
* simptr : pointer to array of test vectors generated from node data.
-- *

/* MODULES SALLEE : */
7,'* convert noce2 vector I): */

Al :hanqe_ ist _str- cturel tptr .fptr s sinmptr
TALLE *tr tr ;
PA AMEER ,fptr
VECDAT- *simp-r:

int i j, . 'I . P . :
7C-IN P er trj,

IM,D,A ir'tr 'outrtr:
:nar *mz:enu]l;
ctiar tr :lI[I " ;
entr y = to tr ,-morp i n
i notr = (tptr i np i n .
,oU ; =. T .ptr -'outlDc r n

'r NUM IM 0rPN
L :Dtr i *_.,ourt:

I = ntr :dat'i st- o

fltI - n 1 r i p n '

for j

*f " nct
++

i'' onref n=q9

* r : : r nr- i '->pin Tdpta :
:or j -1 jr N': +-j)

','ir,%ri'p ndata[j] I inpr +
) -:pmndatnl[P-I] 3

Jn'. %r p r_daca[) = I \IVG

,onve- t_' d e2 e ctor tptr . fptr s i ptr

',)r i g i!= K'% -+
* crt y (ent-ry+-1 >datastg. makenull):

D-24

0 - '- - - m -- - - - ,,,, ,, -- ,,, k ' - - '

AZ

wnil e c cnta Ii r efI

plinsty~iJ = t-ta'.nejl:

p nsTgEV I =

K K fptr)->d~tc_count:

rl s tr 1 un~c

f- IT) 'X __. M-- Xl) >r4AXL

e s e

4 str-at((en- ry+K)->datastg, dptr,40):
-+ fptr)->,d2zg count);.
f C(fpcr)- cst-3_count - (fptr '->NUNC_MONPIN
Cfpt r)->dsr>:.coun t = Z;

strcz'y(dataline. makenu 1);

: I

D- 23

S 0 R E N D E - D AA I

/ STUDENT '1A4E : SQN.LDRSALEEM */
H -HES7S PR'OJECT: CONVERS-O OF ESIM DATA FILES TO A FORMAT SUITABLE

FOR NPUT TO STANFORD IC TES-ER W/
! -HESIS AD]VISOR : COL. H.CARTER WI
,* DESIN >%TE: August 2 .1984 LAST UPDATE: October 27. 1984 =/

SADT REFERENCE: AIS1
---'

DESC IPT':ON: Th's module, on recieving a cata_ 1-ne from ESIM fi'e
segregates it. into its name and data parts. It then adcs the node data */
inz.- it:; respect-ve bufier if enouan apace is availabl-,: otherw se an *I

* overflcz fla is generated to cear the bu-fers before adding any new *I
S Ca-3 . WI
--- '

* PSEUDO CDDE:

K = repitition of data line -n monpin group:
odtr rq = data part of data *ine: W4 *t if (size o1 datring + cata in Kth buffer) > buffer size) W/

set buffer overflow flag.
else

acd data to Kth buffer W-

-- K:
if (K == number of mon'tored p:ns) W
set K = Z; (restart ne)rt group /

I* -

/ CALLING -kRGUMENTS: W-

It tptr : pointer to type TABLE. which contains pointers to different
pin arrays.

,'t fptr : pointer to type PARAMETER, a table which contains all current /
prosiram parameters.

i* data-l~ne : A textline read from ESIM file..an array of characters. W/
first. letter being '>' W

/* MODULES --ALL-[,:
ALLED: None W/

storeode_datatptr.fptr.datalineI
TACELE *tptr:
PAF'AMIE -ER f ctr
cnar .data" ine[-

i nt i =J. 1 , C. K. N. NJ:
char 'pir.otr, 'dpir. 'makenul 1;
char -instg[2.:, d tg li 11Z 1
ICIN * entry

p rotr = D inst-C:

arts] = (t':pr -)morpin:
1aIk-snJ1 1

wh i e c' :t a re , = :

as'trfi"= dszal refJ]D

D- 22

R E S T R U C T U R E T E S T D A T AA -

'**STUDENT*AME****QN.LR*SA*EE* *

'*RESTRUCTPU REO TNFR TES DATAR

* SADT REFRENCE : S L A */

ESC:IPT ON: Chis module stores node DatA inEo its respective buffer thru

' a su Ib_routinE!, changes ts format into test vectors anc stores them in *
"* a giver, ext-erna, file. *

FOPPSPDO TDDE:E*/

'* if (te~tl ine s a 'cid-l ine')
'" st.or2_node_da_-ta();

"* ~if (data overflow = ')/

: ISOc hance daa_structure(;*1
DE N T Aus 2.184LAT:_fOile2. */

.' DESCIPTN: Thor-nodesdator nt) ;I

,:, L L :NG LRGUHE NTS: "
a pur :pointer to type TABLE, which contains pointers to different */
a iver pin arrays.e

* fptr pointer to type PARAMETER, a trable which contains all current *
* pro crari parameters. *
data-line : A textl ine read from SIM file..an array o characters.i

* first, letter be-ng '">' . *
s si -ptr 'pointer to 3rr-a,/ of test vector:; generated from node data. *

* ou7 fi]E..: pointer to fi-e in wh-ch test vectors ar-B to be stored. *

/* MODULES '-'ALL : */store node_data): */

I ,'* chanedJa a _structure(); */
append2_f le */

:i nc I ud.e" def . h
"

=include"stdJio.h"

est uc-.ure_tescatadtptre dptr data) i:ne simrtr ou-fiIe'
TADLE *t r :
PAAHEER *fp r:
char datrrinEs[.:
VpECoDATa *s i primrtsr.
F ILE *outfi le:

;tore iodJe_cats tpor. fptr dta_tinea:

if .fmt')- o~er :,o == I I (fp ;r)->. ia 1 = !

(-? i aincuce.d_,h change atpa r .strctr,) irtr ;
-:,er :ue_ i e(a'ptr , tr , s imptr ouine irntr u

MfptR- fo er ow

EDT - overf'ow
3-aore nod _data(tptr, fptr, data_l ine);

D-21

a" .,"j 1=)"fa' tnt. imtr ottllli Ilil i

. . . . ,c • o'.er.. .ow-

WII

M A F! K C L K P I N

C STUD
T NT "AE " SQt.LDR.SALEEM Wi

-HES:S F:OJECT: CONVESEON OF ESIM DATA FILES TO A FORMAT SUITABLE i

t FOR "MIPUT TO STANFORD IC TES-ER
Z-ETS :)VISOP: COL. H.::ARTER W/

EIN JE: UL\ ' 13.119534 LAST UPDAE: November 3. :934
S;ADT EFRE CE: A12242 /

-- I
,:-lC IPTOlN: Th E module ,omoares eacn element of array of clock pins

* wit) al eiemient,: of ar-ay of monitored pi ns ana sets a corresponcence -

< bet,/eer the -:1eren7s of borh arrays wnen a maLch is found.

-- I

Sorn "=01: i!: total number of clock pins: ++ 1 i

for (j=g: j!= total number o- mon toed :ns: ++j

:f(clkp narray_eleent[i]=monpin arrm"_elementlj]) i

mono n_array-element[j.class = 'CL:CK': *

monp n_ array_eiement 1 j .crsrmr= ; . i

clkp n_arrayelement[i].monr.f
= j;

v

* ~~/* ---
/ CALL :NG 4RGUlE NTS i

/ fptr : pointer to type PARAMETER, a table whicr contains all current "
* procrri parameters. Wi

/ cl;kx : pointer to arra,/ of mon tored p ns. I

cl:sirr:pointer to arra 1 of inpuT pins.
--- i

M MODULES 'ALLEI:

equal _strings():

mar c'pir fpt clk:.,clksinl
PAFINlE-ER *fpmr
ICuIrI 'clKi:

int i

for =: i = (fptr)->clk, count: +i

for j= 1i:ptr)->NLIM_ MONPIN: -+j

if nu. 1-orinj:(c lks mi--,p n _lesig.clkx-j,->nsme),

c + ,- ,:: rZ_ ' .

c ; - - ir nr- - = J
or Fi

cM',rim - .- nonre": = rOE

c IDU 1 r

Dr ntf "execL't iric create_clkpin_ ar-ay ',,n"
for (= i *, rt --C::l :ount: -i)

rin"" ,c
i, n f " "._-- clkain -- i)-,Din _de_=ig):

d in " d clk,31m , ,mon r

p- i n .(clkz iri i /-,- p n aI a):

0-20

S ' r , , " " " '• -- "

- r-rn w w r*r Wrv r W w oww w'-rr-r -r rfl W -W

SM A P K N P I N

* r., D'NT 'IAME : 0N . DLR. SAL EEM *
-HESZS POJECT: CON1VERS'ON OF ESIM DATA FILES TO A FORMAT SUITABLE

* FOP, NPUT TO STANFOP,D IC TEU-ER *
-HESS ADVISOF : COL AH. ARTZR Z/

E: E TE: JUL" 14.19U4 LAST UPCAE: November 3, -984 */
: ACT PE7-REN:CE: "2-

2 "/

--

I CTCPTEO)N: Th-s modul,! compares each element of array of input pins */
win a I elrnents of ar-av of monitored pirs and sets a correspondence */
bet'eer tne --lenents of borh arrays vnen a matcn is found.

--

P PSE:_.,: 0 D E :

--cr(=0; if= total number of input pins; 4+) */

for (J =0, j!= total number o- mon to-ed rns: ++j) */4,* (*/

Sf1 inp n_arrayelement[i ==monvinarray_element[jJ) 3/

* monp narrayelementEj] .class = 'INPIT';
monp narray_elementEj J.crsref

=
i

SnP n_arrayelement[i .monr f=j; */

CALL:NG kRGU MIEtITS */
fp:r : pointer to type PARAMETER, a table which contains all current */

,'* proc-ran parameters. */
,* entry: pointer to array of mon'tored p ns. */
/* simin: pointer to array of input pins. */

'* MODULES ZALLEC: */
1*"" ecun 1 _ strinoso):* */

mar, in i nl pt.-, Entry,,simin
PAr P N-E ER *fp r

N * ntr ;
DA-A *;M i n;

i n

K = t tr >in count;

for (i D 1' I; -- i

sim n + i -'nonref = NOPEF
for j=r1: j != ifptr)->NUM_MONP:N: ++j

f ej_ 1 trinc s((entry~j)->name. Is min+i)->,pin_des~g)

ntr' + r->c ass = I':

: mw i-icnret =

tf "eye:Ltin, mark npin: \n"):
::Z:!- - ' i .'= i + j i

r-ntW ""d ', i (;imin+i)->pindensigl
pr <ntf(V;c%: ,n",is mini l-,monref.sinin+i,-pin ctaa

U-] Q

Appendix "E"

SIEVE

A Functional Test Specification

Interchange Format

Introduction

The enclosed format provides for the specification of a

procedure for functionally testing digital microchips.

You may specify a sequence of input vectors, binary

values for your chip's input pins, and also a sequence of

output vectors, binary values expected of your chip's out-

put pins.

This interchange format ultimately drives testing

40 equipment so that your chip receives your specified input

vectors and has its outputs checked against your specified

output vectors. Any time your chip's uuputs do not match

your specified output vectors, the test procedure notifies

you of the clock cycle and the pin with the unexpected out-

put value.

Note: This interchange format is to be read and
written primarily by machines and not people.
Therefore, feel free to write your own test
language and programs to translate your favorite
language into this particular format. (The
introduction of macros in this format was
motivated not by human convenience, but for the
potential of saving disk space).

Getting Started

The interchange format consists of two parts, a

E-1

"declarations" section and a "body" section.

The declaration section gives names to your chip's

pins so that you can specify subsequently, in the "body"

section, your test vectors in terms of these names for

pins, as opposed to specifying something horrible such

as geometric coordinates for your pins each time you

want to reference each pin.

It is also in the declaration section where you

specify which pins are to receive power (VDD) and ground

(GND).

Finally, the declaration section provides a rudimen-

tary, parameterless "macro" definition capability. That

is, you may define abbreviations in the declaration section

which will be understood within the "body" section. This

capability provides for shorter interchange files.

Comments may be placed anwhere, and have the format:

/* arbitrary text */

In addition, blanks (spaces, tabs, carriage-returns,

line-feeds, form-feeds) may appear anywhere.

The Declaration Section

The first thing to appear in your interchange format

file is the "declaration" section. There are five parts

in this section, and they may appear in any order.

Each part begins with a keyword followed by a colon.

Four of the five parts serve to assign numbers to pins.

The remaining part provides for macro definitions.

E-2

Providing Names (Numbers) For Your Pads/Pins

Imagine your chip as a box, which has of course four

sides, TOP, BOTTOM, LEFT, and RIGHT. You assign numbers

to pins separately for each of the four sides:

TOP: # , # . , # ;

BOTTOM: # ,#, . . #;

RIGHT: # , , . ,

LEFT: # 1, # . , # ;

[Nomenclature: We will use the sharp sign (#) to

designate any string of digits.]

The order of the numbers following each of the four

edge-keywords is important. We assume that you assign

numbers along the TOP and BOTTOM edges left-to-right.

We assume also that you assign numbers along the LEFT and

RIGHT edges bottom-to-top. In other words, we expect

always that the order corresponds to increasing-X or

increasing-Y coordinates.

We reserve the numbers 0 and 1, which designate that

the corresponding pin is to be tied to GND or VDD forever!

We wish to stress that this interchange format is meant

to be generic. We intend it to be sufficiently non-specific

so as to apply either to pads on a chip or to pins on a

package, etc. For a particular application, you will need

in addition to this document another document which dictates

exactly how many elements are expected along the TOP,

BOTTOM, LEFT, and RIGHT.

E-3

For example, if we are testing a packaged chip, TOP,

BOTTOM, LEFT, and RIGHT correspond to the four sides of

the package itself. (A 40-pin DIP will expect 20 entries

in each of TOP and BOTTOM, and zero entries in each of

LEFT and RIGHT).

For another example, if we are testing via direct wafer

probe, we will generally insist that your project employs

some well-defined "standard pad frame" (for which we will

have constructed a "standard probe card"). In this case

once again, the lengths of each of TOP, BOTTOM, LEFT, and

RIGHT are fixed, and so your positional association of

signal numbers along each edge continues to be well-

defined.

Macros

The fifth part of the declarations sections provides

for macro definitions:

MACRO: name [arbitrary text

MACRO: name [arbitrary text]

MACRO: name (arbitrary t ext I

Each macro definition is preceded by the keyword MACRO

followed by a colon. Then comes the macro name (the

abbreviation which you will use later in the "body"). The

expanded meaning of the abbreviation appears following the

name, enclosed in curly brackets (C)).

We restrict macro names to consist only or letters and

E-4

digits and underscores (. We will make distinction

between upper and lower case letters. We insist also that

macro names be unique in their first 64 characters, (e.g.,

you're safe if all your macro names contain no more than

64 characters).

Finally, the order of macro definition is unrestricted.

In fact, MACROs may be "nested", that is, a macro may call

another macro from with its definition (the "[arbitrary

test]" part).

The Body: Your Test Vectors

The body starts off with the keyword

BEGINTEST:

4 7 and continues with a sequence of any of four directives, and

finally terminates with the keyword

END TEST

The four kinds of directives are:

"Drive a pin to a specified value"

"Verify that a pin presently has a specified

value"

"Complete specifications received thus far

before proceeding"

"Call a macro"

Let's discuss the first two, most popular, directives

first. You actually specify not an input vector at a time,

but rather one element of an input vector at a time. You

actually say "drive this single pin to this single value".

E-5

You specify an entire vector by specifying many "drive pin"

directives.

The "drive pin" directive appears as follows:

= # ; that is, pin = value

The semicolon is part of the specification. The first

number designates the pin and the second number specifies

the value, 0 or 1. (Please remember that this pin number is

unrelated to any numbering of pins that might be associated

with a chip package, rather, this pin number is associated

to your chip via "The Declaration Section").

The "verify pin" directive has a similar format, where

the "=" is replaced by "?":

? # ; that is, pin ? value;

Again, the semicolon is part of the specification.

Framing

The third kind of directive provides for the grouping

of pin directives into an entire vector. By "vector" we

have meant and continue to mean "one set of values to

apear on your chip's pins concurrently". For example, if

your chip has 47 pins, one "test vector" designates 47

values. This interpetation of the term "test %ector"

* implies a one-dimensional vector, NOT to be confused with a

sequence of vectors that comprise an entire test. For us,

an entire test running over many clock cycles is in fact a

"sequence of vectors".

Because we have provided only for the specification of

E-6

L . -.. - .. . 2 ."

one pin at a time, there is as yet no concept of a test

vector, or clock cycle. You use the third directive,

literally

NEXT

to designate the end of one vector and the beginning of

another.

This directive provides the "frames" around pin

specifications to groupg them into vectors. Please

note that between two NEXTs, all the pin/value specifica-

tions may appear in any order; this order must be irrele-

vant to the actual testing procedure.

What About Clocks?

This interchange format provides absolutely no dis-

tinction between clocks and other signals. A clock is

merely a signal on some pin.

You introduce the distinction that clocks imply,

namely that of separating time into discrete quanta, by

using this "NEXT;" directive. That is, we expect that you

will include in each test vector a specification for your

clocks, both to turn the clock on and another to turn the

clock off.

An entire clock cycle in a two-phase system will take

four test vectors, (NEXTs):

one to turn phl ON

one to turn phl OFF

one to turn ph2 ON

E-7

one to turn ph2 OFF

That's A Lot of Test Vectors!

Four vectors per clock cycle seems steep alright, but

each test vector may be very short in specification.

Because this format demands that you name pins explicitly

in each test vector, as opposed to using a "positional" pin

association, you may in fact omit the specification of some

pins in many of the test vectors.

You need specify only those pins whose values you want

to change. Pins which are meant to continue with their

values from the previous test vector need not be respecified.

As some cultures say, the "drive pin" directive acts as

a "sticky" switch.

Please iemember that NEXT does not imply clocking of any

sort, and in fact, the literal sequence

NEXT; NEXT;

is entirely equivalent to the shorter

NEXT;

For NEXTs to act like clocks, you must include between NEXTs

at least one "drive pin" directive upon one of your clock

signals.

Macro Calls

You may invoke a macro simply by writing the macro's

name:

macro-name

E-8

". -- ..-..-.

This is entirely equivalent to writing instead the macro's

body, the text enclosed between curly brackets ([I) in the

macro's definition.

Initial Conditions

Upon starting up your test, you may assume that all your

pins have been driven to 0.

Example

Imagine the world's second most simple chip, a single-

bit of a counter.

It has inputs named RESETIN and CARRYIN, and outputs

named RESETOUT, CARRYOUT, and VALUE.

Let's define the expected behavior in terms of synchronous

logic:

RESETOUT = RESETIN (pretty trivial eh?)

CARRY OUT = VALUE & CARRY IN

VALUE =next not(CARRY IN) & VALUE
CARRY-in & not(VALUE

All this says is that

RESET OUT follows RESET IN all the time, and that

CARRYOUT is the logical AND of the present VALUE

held by this chip and CARRYIN, and that

this chip's VALUE, to be set upon the next clock cycle,

remains unchanged if CARRY IN is OFF, or flips if

CARRYIN is ON.

Now let's imagine the chip with its pads:

E-9

,ND CARRY IN-----------------------------
I I
I I

phl -I I
I I- CARRY OUT

RESET IN -1 I
I I- RESETOUT
I I
I I- VALUE

ph2 VDD

Here is a sample test specification, loaded with comments:

TOP: 0 , 11 ; /* GND and CARRYIN */

BOTTOM: 32, 1 ; /* ph2 and VDD */

LEFT: 10, 31 ; /* RESET IN and Phl */

RIGHT: 21, 22, 20 ; /* VALUE, RESETOUT, CARRYOUT*/

/* The pin numbers chosen are entirely arbitrary,

except of course 0 (GND) and 1 (VDD). We've chosen

the clocks to be in the 30s, output in the 20s, and

inputs in the teens. */

MACRO: PHION [31 = 1]

MACRO: PHi OFF r 31 = 0]

MACRO: PH2_ON [32 = 1)

MACRO: PH2 OFF [32 = 0

MACRO: RESET 1 10 = 1]

MACRO: UNRESET 1 10 = 0 3 /*(This is affecting

RESETIN*/

MACRO: CARRYIN [11 = 1]

MACRO: UNCARRYIN [11 0 0 3

/* This has been a randomly chosen set of macros.*/

E-10

BEGIN-TEST:

UNRESET; UNCARRYIN: PHI_OFF; PH2_OFF: NEXT:

/* This first specification turns off a lot of

signals. The final NEXT; marks end-of-test-

vector*/

PHION ; NEXT ; /* Diddle the clocks */

PHl OFF; NEXT ;

PH2 ON ; NEXT ;

PH2_OFF; NEXT ;

/* Alright, let's get serious ... */

10 = 1; PHl ON; NEXT; /* Turn on RESET IN*/

22 ? I; PHlOFF; NEXT; /* Check RESETOUT */

/*Notice how we check RESET OUT during a test vector

strictly after that test-vector which set RESETIN.

The elements within a test-vector have no reliable

"order of execution". Thus, if we were to read

RESET OUT (22) during the same test-vector that

set RESETIN (10), we would not know what to

expect.

It is important to remember that NEXT has nothing

to do with clock cycles. The fact that we must

read strictly after writing is a property of this

testing scheme; it does not imply that your chip

in fact imposes a delay between RESET IN and

RESETOUT. */

/* Keep the clocks moving ... *1

E-11

PH2_ON; NEXT;

PH2_OFF; NEXT;

/* Let's try setting CARRY IN and see what that does

to VALUE */

11 = 1; PHI_ON: NEXT;

21 ? 0; PHI OFF; NEXT; /*Hope VALUE (21) has not

changed. We have not

finished a complete

clock-cycle*/

PH2 ON; NEXT;

PH2_OFF; NEXT; /* We now have completed a clock

cycle, and hence expect VALUE

to change */

21 ? 1; 0

11 = 0; PHI ON; NEXT;

/*We just checked VALUE, and simultaneously

turned off CARRYIN (11). */

/* We don't know which zLn is affected first;

CARRYIN or PHI/ However, we can assume the

CARRY-IN and PHI have their specified values

in place now, just after the NEXT. */

ENDTEST

End of Example 0

$E1

E-12

S

- -- - ~ . - -. -

Appendix "F"

ESIM(CAD) CAD Toolbox User's Manual ESIM(CAD)

Name

esim - event driven switch level simulator

Synopsis

esim [filel (file2...]]

Description

Esim is an event-driven switch level simulator for NMOS

translator circuits. Esim accepts commands from the user,

executing each command before reading the next. Commands come

in two flavors: those which manipulate the electrical net-

work, and those to direct the simulation. Commands have

the following simple syntax:

c argl arg2 ... argn <new line>

where 'c' is a single letter specifying the command to be

performed and the argl are arguments to that command. The

arguments are separated by spaces (or tabs) and the command

is terminated by a <new line>.

To run esim type,

esim filel file2 ...

Esim will read and exccute commands, first from filel, then

file2, etc. If one of the file names is preceded by a '-'

F-l

ESIM(CADl) CAD Toolbox User's Manual ESIM(CADI)

then that file becomes the new output file (the default

output is stdout). For example,

esim f.sim -f.out g.sim

This would cause esim to read commands from f.sim, sending

output to the default output. When f.sim was exhausted,

f.out would become the new output file, and the commands in

g.sim executed.

After all the files have been processed, and if the "q"

command has not terminated the simulation run, esim will

accept further commands from the user, prompting for each

one like so:

sim> 6

The user can type individual commands or direct esim to

another file using the "@" command:

sim> @ patchfile.sim 0

This command would cause esim to read commands from

"patchfile.sim", returning to interactive input when the

file was exhausted.

It is common to have an initial network file prepared

by a node extractor with perhaps a patch file or two

prepared by hand. After reading these files into the S

simulator, the user would then interactively direct esim.

This could be accomplished as follows:

esim file.sim patch.l patch.2

F-2
"°" S

AD-Ai~i 961 SYSTEM DESIGN OF AUTOMATED VLSI (VERY LARGE SCALE 3/4
INTEGRATED) TEST STATID .(U) AIR FORCE INST OF TECH
HRIGHT-PATTERSON AFB ON SCHOOL OF ENGI. S TARIO

UNLSITDDEC 84 AFIT/GE/EE/84D-27 F/G 9/5 U

11111____ 11112.2
36 -

1111111112-0

IIII(.25 111111.

MCRC~OPY RFSOLUJ ION I [Si CHART

VLN

6

ESIM(CADl) CAD Toolbox User's Manual ESIM(CAD)

After reading the files, esim would prompt for the first

command. Or we could have typed:

% esim file.sim

sim> @ patch.l

sim> @ patch.2

Network Manipulation Commands

The electrical network to be simulated is made up of

enhancement and depletion mode transistors interconnected

by nodes. Components can be added to the network with the

following commands.

e gate source drain

e gate source drain length width key xpos ypos area

Adds enhancement mode transistor to network with

the specified gate, source, and drain nodes. The

longer form includes size and location information

as provided by the node extractor -- when making

patches the short form is usually used.

d gate source drain

d gate source drain length width key xpos ypos area

Like "e" except for depletion mode devices.

C nodel node2 cap

Increase the capictance between nodel and node2 by

cap. Esim ignores this unless either nodel or

node2 is GND.

F-3

ESIM(CADI) CAD Toolbox User's Manual ESIM(CADl)

= node namel name2 name3

Allows the user to specify synonyms for a given

node. Used by the node extractor to relate

user-provided node names to the node's internal

name (usually just a number).

comment ...

Lines beginning with vertical bar are treated as

comments and ignored -- useful for deleting pieces

of network in node extractor output files.

i node

Input record -- output by node extractor and not

used by esim.

Currently, there is no way to remove components from

the network once they have been added. You must go back to

the input files and modify them (using the comment

character) to exclude those components you wished removed.

"N" records need not be included for new nodes the user

wishes to patch into the network.

Simulator Commands

The user can specify which nodes are to have their

values displayed after each simulation step:

F-4

ESIM(CADI) CAD Toolbox User's Manual ESIM(CADl)

w nodel -node2 node3 ...

Watch nodel and node3, stop watching node2. At the

end of a simulation step, each watched node will be

displayed like so:

nodel=0 node3=X ...

To remove a node from the watched list, preface its

name with a '-' in a "w" command.

W label nodel node2 ... noden

Watch bit vector. The values of nodes nodel, ... ,

noden be will displayed as a bit vector:

label=010100 20

where the first 0 is the value of nodel, the first

1 the value of node2, etc. The number displayed to

right is the value of the bit vector interpreted as

a binary number; this is omitted if the vector

contains an X value. There is no way to unwatch a

bit vector.

Before each simulation step the user can force nodes to be

either high (i) or low (0) inputs (an input's value cannot

be changed by the simulator!):

h nodel node2 ...

Force each node on the argument list to be a high

input. Overrides previous input commands if

necessary.

F-5

ESIM(CADI) CAD Toolbox User's Manual ESIM(CADI)

1 nodel node2 ...

Like "h" except forces nodes to be a low input.

x nodel node2 ...

Removes nodes from whatever input list they happen

to be on. The next simulation step will determine

their correct value in the circuit. This is the

default state of most nodes. Note that this does

not force nodes to have an "X" value -- it simply

removes them from the input lists.

The current value of a node can be determined in

several ways:

OO v
View. Prints the values of all watched nodes and

nodes on the high and low input lists.

? nodel node2 ...

Prints a synopsis of the named nodes including

their current values and the state of all

transistors that affect the value of these nodes.

This is the most common way of wondering through

the network in search of what went wrong ...

I nodel node2 ...

For each node in the argument list, prints a list

of transistors controlled by that node.

"?" arid "!" allow the user to go both backwards and

F-6

ESIM(CADI) CAD Tolbox User's Manual ESIM(CADl)

forwards through the network in search of that piece

causing all the problems.

The simulator is invoked with the following commands:

s

Simulation step. Propogates new values for the

inputs through the network, returns when the

network has settled. If things don't settle,

command will never terminate -- try the "w" and "D"

commands to narrow down the problem.

c

Cycle once through the clock, as defined by the K

command.

Initialize. Circuits with state are often hard to

initialize because the initial value of each node

is X. To cure node whose value is charged-X and

changes it to charged-0, then runs a simulation

step. If one iterates the I command a couple

times, this often leads to a stable initialized

condition (indicated when an I command takes 0

events, i.e., the circuit is stable).

Try it -- if circuit does not become stable in 3 or

4 tries, this command is probably of no use.

F-7

ESIM(CADl) CAD Toolbox User's Manual ESIM(CADl)

Miscellaneous Commands

D

Toggle debug switch. Useful for debugging

simulator and/or circuit. If debug switch is on,

then during simulation step each time a watched

node is encounted in some event, that fact is

indicated to the user along with some event info.

If a node keeps appearing in this printout, chances

are that its value is oscillating. Vice versa, if

your circuit never settles (i.e., it oscillates),

you can use the "D" and "w" commands to find the

node(s) that are causing the problem.

> filename

Write current state of each node into specified

file. Useful for make a break point in your

simulation run. Only stores values so isn't really

useful to "dump" a run for later use -- see "<"

command.

< filename

Read from specified file, reinitializing the value

of each node as directed. Note that network must

already exist and be identical to the network used

to create the dump file with the ">" command.

These state saving commands are really provided so

F-84!

ESIM(CADI) CAD Toolbox User's Manual ESIM(CADI)

that complicated initializing sequences need only

be simulated once.

L

Invokes network processor that finds all subnets

corresponding to simple logic gates and converts

them into form that allows faster simulation.

Often it does the right thing, leading to a 25% to

50% reduction in the time for a single step. [We

know of one case where the transformation was not

transparent, so caveat simulee...]

X ...

9D call estension command -- provides for user

extensions to simulator.

q

exit to system.

Local Extensions

V node vector

Define a vecto: of inputs for the node. The first

element is initially set as the input for node.

Set the next element of the vector as the input

after a cycle.

Rn

Run the simulator through n cycles. If n is not

present make the run as long as the longest

F-9

S:

*ESIM(CADl) CAD Toolbox User's Manual ESIM(CADI)

vector. All watch nodes are reported back as

vectors.

N

Clear all previously defined input vectors.

K nodel vectorl node2 vector2 ... nodeN vectorN

Define the clock. Each cycle, nodes 1 through N

must run thrc-igh their respective vectors.

Author

Chris Terman

F-iO

PROCESS DEFINITION

PROCESS NAME: Add Data in Associated Node Buffer

PROCESS ID NUMBER: A1313

PROCESS PICTURE:

Node-Address Add Data Buffer Overflow
in Assoc-

iated Node
Node-Data Buffer Node-Test Data

0 PROCESS DESCRIPTION: This process gauges the incoming data

and its associated node buffer to confirm availability of

space. This process generates "buffer overflow" if incoming

data exceeds the available space. Otherwise data is added to

data already held in the buffer.

INPUT DATA FLOW: Node-Address

Node-Data

OUTPUT DATA FLOW: Buffer Overflow

Node-Test Data

REFERENCE DIAGRAM: A131

ADDITIONAL COMMENTS: None

G-1

3

PROCESS DEFINITION

PROCESS NAME: Add New-Data to Pre-Data

PROCESS ID NUMBER: A13134

PROCESS PICTURE:

m Buffer overflow

Node Address Add
New-Data Node Test-Data

to
Node Data Pre-Data

PROCESS DESCRIPTION: This process, if total data (new-data

and pre-data) does not exceed the buffer capacity, adds

new-data to the Pre-data in memory buffer.

INPUT DATA FLOW: Node Address

Node Data

OUTPUT DATA FLOW: Node Test Data

REFERENCE DIAGRAM: A1313

ADDITIONAL COMMETS: This :)rocess is readily implemented in

... lanquage by a system library routine

strcat (Sl , S 2 , which cancetenates two given buffers.

S-2

PROCESS DEFINITION

PROCESS NAME: Analyze Results

PROCESS ID NUMBER: A41

PROCESS PICTURE:

Users' Option

Resultant Output
Analyze

Test Results
Results

Reference Data

PROCESS DESCRIPTION: This process transforms the resultant

output from IC tester pins domain to ICUT pins' domain and •

compares the output with reference data for any

non-conformity. It generates an additional message on

successful/unsuccessful completion of test. S

INPUT DATA FLOW: Resultant Output

Reference Data

OUTPUT DATA FLOW: Test Results

REFERENCE DIAGRAM: A4

ADDITIONAL COMMENTS: None

G-3

PROCESS DEFINITION

PROCESS NAME: Append2 - File

PROCESS ID NUMBER: A133

PROCESS PICTURE:

Jutuut Reference Vector
Append 2-

InrIut Test Vector Restructured
File Test Data

File Name

1)iEC1S DESCRIPTION: This process empties the buffers to

cni exte rnal file "filename", and is implemented by a system

Vur1rv routine. (fprintf)

IK'T, DATA FLOW: Output Reference Vector

Input Test Vector

File Name

i'TP'T DATA FLOW: Restructured Test Data

EFI]FIRENCE DIAGRAM: A13

ADDITI ONAL COMMENTS: None

(;-4

PROCESS DEFINITION

PROCESS NAME: Check Overlap with Power/Ground Pins

PROCESS ID NUMBER: A252

PROCESS PICTURE:

Userst Data Class. Flag
Option 1 K Data
UOPM

Reference Check
Tables Overlap With Valid Input Data

Power/Ground
Pins

Inn)ut Data

PROCESS DESCRIPTION: This process carries out bitwise

comparison of input data (initialization and test data

in Manual Mode of operation) to confirm that no pin

designated as "Pcwer/Ground" pin is simulated by the 1

input data.

INPUT DATA FLOW: Reference Tables

Input Data

DI' DATA FLOW: Valid Input Data

I LLf]ThE DIAGRAM: A25

G-1,

PROCESS DEFINITION

PROCESS NAME: Check Overlap with Output Pins

PROCESS ID NUMBER: A251

PROCESS PICTURE:

users' data classification flag
option 1 1 'IC data'
'uopm'

Reference Check
Tables Overlap With Valid Input Data

Output Pins
Input Data_

PROCESS DESCRIPTION: This process carries out bitwise

comparison of init data vector in Manual mode of

operation to confirm that no designated "output" pin is

being simulated by the init data vector.

INPUT DATA FLOW: Reference Tables

Input Data (init/test data)

*init = initialization 0

.UTPUT DATA FLOW: Valid Input Data

RLFERENCE DIAGRAM: A25
S

ADDITIONAL COMMENTS: This process is activated only during

"Manual" mode of operation.

G-17

PROCESS DEFINITION

PROCESS NAME: Check Overflow

PROCESS ID NUMBER: A13133

PROCESS PICTURE:

Pre-Data Check
Overflow Buffer Overflow

New-Data

PROCESS DESCRIPTION: This process, generates an error signal

"buffer overflow" if the total amount of data, pre-data and

new-data exceeds the buffer capacity.

INPUT DATA FLOW: Pre-Data

New-Data

OUTPUT DATA FLOW: Buffer-Overflow

REFERENCE DIAGRAM: A1313

ADDITIONAL COMMENTS: None

G-16

PROCESS DEFINITION j
PROCESS NAME: Check Option Syntax

PROCESS ID NUMBER: A2233

PROCESS PICTURE:

Option Set

Check
Option Char Option Valid Option

Syntax

PROCESS DESCRIPTION: This process, verifies that option-

input-character is within "A to D" for manual mode and

within range of "A to F" for Auto mode of operation. In case

of non-validity, it asks the user to input a valid response.

INPUT DATA FLOW: Option Char

OUTPUT DATA FLOW: Valid Option

REFERENCE DIAGRAM: A223

AmI TIONAL COMMENTS: None

G-15

' " . . . " = " " "n" " m ~ m " " . '' ' ' "w ' . ' '' S

PROCESS DEFINITION

PROCESS NAME: Check Input Range

PROCESS ID NUMBER: A222

PROCESS PICTURE:

Data Classification Flags

Check
KB Input Input Input Text

Range

PROCESS DESCRIPTION: This process checks that input

received in response to a particular system response lies

within the expected range. The range is made known to the

user in user-friendly system menues.

INPUT DATA FLOW: KB Input

OUTPUT DATA FLOW: Input Text

REFERENCE DIAGRAM: A22

ADDITIONAL COMMENTS: None

G-14

PROCESS DEFINITION

PROCESS NAME: Check if GT

PROCESS ID NUMBER: A1123

PROCESS PICTURE:

Check
Test-Char if Data-Line

GT

PROCESS DESCRIPTION: This process, on receiving a test-char

(first character of a given text-line) checks if it is ">"

(greater than sign). If it is found to be true then text-

liine is declared to be a data-line.

INPUT DATA FLOW: Test-Char

OUTPUT DATA FLOW: Data-Line

REFERENCE DIAGRAM: A112

ADDITIONAL COMMENTS: None

G-13

0I

PROCESS DEFINITION

PROCESS NAME: Check if Element of Outpin-Array

PROCESS ID NUMBER: A12312

PROCESS PICTURE:

hl Array Check if
Element of Valid Cmd-Line

Outpin
Classified Pin Array

List

PROCESS DESCRIPTION: This function compares each element

of hl array successively with all elements of outpin array.

It sets a flag for cmd-line being valid if no element is found

to be common between two arrays.

INPUT DATA FLOW: hl Array

Classified Pin List

OUTPUT DATA FLOW: Valid Cmd-Line

REFERENCE DIAGRAM: A1231

ADDITIONAL COMMENTS: None

G-12

L .. ~ ,_ -__,

PROCESS DEFINITION

PROCESS NAME: Check if Alphabetic

PROCESS ID NUMBER: A1122

PROCESS PICTURE:

Check
Test-Char if Alpha- Cmd-Line

betic

PROCESS DESCRIPTION: This process, on receiving a test-char

checks if it is alphabetic (a-z or A-Z) by a system library

routine (isalpha()). If test-char is found to be alpha-

betic, text line is declared to be a cmd-line (command

-line

INPUT DATA FLOW: Test-Char

OUTPUT DATA FLOW: Cmd-Line

REFERENCE DIAGRAM: A112

ADDITIONAL COMMENTS: None

G-l11

_

PROCESS DEFINITION]
PROCESS NAME: Check for Specific Command

PROCESS ID NUMBER: A121

PROCESS PICTURE:

Check Tab Cmd-Line
Cmd-Line For

Specific
Command RC Cmd-Line

PROCESS DESCRIPTION: This process, interprets the first

character of a cmd-line and categorizes it to be tab

cmd-line, if it is w, V, k, or I. Otherwise, for first

character to be h. 1, or N cmd-line is categorized to be

RC Cmd-Line.

INPUT DATA FLOW: Cmd-Line

OUTPUT DATA FLOW: Tab Cmd-Line

RC Cmd-Line

REFERENCE DIAGRAM: A121, A12

ADDITIONAL COMMENTS: The details of ESIM commands are

described in Appendix "F".

G-10

PROCESS DEFINITION

PROCESS NAME: Check Availability of Test File

PROCESS iD NUMBER: A2221

PROCESS PICTURE:

-Auto"

Test File Name Check
Availability Found

of Test
File Director File

PROCESS DESCRIPTION: This process in Auto mode operation

scans file directory to check availability of test file

whose name has been inputted by the user. Flag "found" is
)0

set to be true if file is available.

INPUT DATA FLOW: Test File Name

OUTPUT DATA FLOW: Found

REFERENCE DIAGRAM: A222

ADDITIONAL COMMENTS: This process is readily implemented

in "C" language by system library function (open (...)),

which accesses a given file in lead, write or append mode.

0

G-9

PROCESS DEFINITION

PROCESS NAME: Change Effected Pins' Status

PROCESS ID NUMBER: A1232

PROCESS PICTURE:

Valid Cmd Line
Change

Effected Pin Desig Data
Classified Pin Pins' Status

List

PROCESS DESCRIPTION: This process changes the status of a

pin to "high/low". For a valid Cmd.line. The effected

pins must belong to either class of input pins or class of

unmarked pins.

INPUT DATA FLOW: Valid Cmd.Line

Classified Pin Lists

OUTPUT DATA FLOW: Pin Desig Data

REFERENCE DIAGRAM: A 123

ADDITIONAL COMMENTS: None

G-8

PROCESS DEFINITION

PROCESS NAME: Change Data Structure

PROCESS ID NUMBER: A132

PROCESS PICTURE:

r
Buffer Overflow

Node Test Data Change Output Reference
Data Vector

Structure
Pin Desig Data Input Test Vector

PROCESS DESCRIPTION: This process converts the node test

data for all input pins to input test vector and for all

(p output pins to output reference vector. This process is

activated by buffer overflow to empty the buffers for new

data.

6
INPUT DATA FLOW: Node Test Data

Pin Desig Data

OUTPUT DATA FLOW: Output Reference Vector

Input Test Vector

REFERENCE DIAGRAM: A13

ADDITIONAL COMMENTS: None

G-7

17 1- 4"..

PROCESS DEFINITION

PROCESS NAME: Change Data Format

PROCESS ID NUMBER: A14

PROCESS PICTURE:

Change
Restructured Data Test Data File
Test Data Format

PROCESS DESCRIPTION: This process changes the memory

storage pattern of restructured test data from VAX-

system format into LSI-ll micro computer data-format,

and transfers this file onto an 8" floppy disk. This is

implemented through system library routines.

INPUT DATA FLOW: Restructured Test Data

OUTPUT DATA FLOW: Test Data File

REFERENCE DIAGRAM: Al, A14

ADDITIONAL COMMENTS: None

G-6

PROCESS DEFINITION

PROCESS NAME: Apply Simulations

PROCESS ID NUMBER: A3

PROCESS PICTURE:

Users' Option

Apply
Input Data Resultant Output

Simulations

PROCESS DESCRIPTION: This process translates input data

from IC pin numbers to their respective physical locations

on IC tester. It converts the simulation data into "SIEVE"

format which is particularly required to operate Stanford IC

tester. This process also applies physical voltages to

effect simulation of IC Under Test (ICUT) and sample the

pins of ICUT to get "resultant output".

INPUT DATA FLOW: Input data - input data consists of

Manual test data entered through keyboard in "Manual" mode

of operation or test data received from test data file in

"Auto" mode of operation.

OUTPUT DATA FLOW: Resultant output.

REFERLNCE DIAGRAM: AG

ADDITIONAL COMMENTS: None

G-5

PROCESS DEFINITION

PROCESS NAME: Check Syntax of Selection

PROCESS ID NUMBER: A2313

PROCESS PICTURE:

I Selection Set

4Check
Selection Char Syntax of Valid Selection

Selection

PROCESS DESCRIPTION: This process confirms that selection

char, input by user, actually has within range of offered

selections.

INPUT DATA FLOW: Selection Char

OUTPUT DATA FLOW: Valid Selection4

REFERENCE DIAGRAM: A231

ADDITIONAL COMMENTS: This process repeats itself to get

valid input from user.

G-19

PROCESS DEFINITION

PROCESS NAME: Classify Input

PROCESS ID NUMBER: A22

PROCESS PICTURE:

KB Input 6 Data Classification
Classify Flags

4 Input

System Prompt KB Text

PROCESS DESCRIPTION: This process classifies all keyboard

input into three broad categories of option data, IC data

and test data. It also sets six data classification flags

*7 in accordance with expected response to a particular system

prompt.

INPUT DATA FLOW: KB Input

System Prompt (generated by executive
software program)

OUTPUT DATA FLOW: Six Data Classification Flags

KB test

REFERENCE DIAGRAM: A2

ADDITIONAL COMMENTS: Details of data classification

flags is included in description of node A22 & A221.

G-20

PROCESS DEFINITION

PROCESS NAME: Classify Text-Line

PROCESS ID NUMBER: A112

PROCESS PICTURE:

Classify Cmd-Line
Text-Line

Text-Line

Data-Line

PROCESS DESCRIPTION: This process categorizes each text-

line lead from ESIm file to be either a Cmd-line (first

character being an alphabet) or a data-line (first

U) char&cter being a '>'). It ignores the blank lines.

INPUT DATA FLOW: Text-Line

OUTPUT DATA FLOW: Cmd-Line

Data-Line

REFERENCE DIAGRAM: All

ADDITIONAL COMMENTS: A brief explanation of commands and

data format of ESIM file is attached as Appendix "F".

G-21

PROCESS DEFINITION

PROCESS NAME: Compare for Results

PROCESS ID NUMBER: A412

PROCESS PICTURE:

Users'
Option

Pin Domain Result

Compare
For Test Results

Reference Data Results

PROCESS DESCRIPTION: This process carries out bitwise

comparison between pin domain results (output of ICUT)

and reference data to single out any non-conformity.

It generates a "GO/NOGO" message for successful/

unsuccessful completion of a test.

INPUT DATA FLOW: Pin Domain Result

Reference Data

OUTPUT DATA FLOW: Test Results

REFERENCE DIAGRAM: A41

ADDITIONAL COMMENTS: None

G-22

". "_" "'-'__ _ _
-

_ . _ _ - .-- 4t

PROCESS DEFINITION

PROCESS NAME: Confirm Mode Validity

PROCESS ID NUMBER: A2222

PROCESS PICTURE:

"Manual"

Confirm
Found Mode Valid Mode

Validity

PROCESS DESCRIPTION: This process confirms the validity

of mode if found is true in Auto-mode or if "Manual" mode

has been preferred.

INPUT DATA FLOW: Found

OUTPUT DATA FLOW: Valid Mode

DIAGRAM REFERENCE: A222

ADDITIONAL COMMENTS: None

G-23

•

PROCESS DEFINITION

PROCESS NAME: Convert Back into ICpin Domain

PROCESS ID NUMBER: A411

PROCESS PICTURE:

User's Option

Resultant Output Convert

Back Into Pin Domain
ICpin Result

Reference Tables Domain

PROCESS DESCRIPTION: This process converts the sampled

output of ICUT into ICpin domain by referring reference

tables which establish correspondence between tester pins

and ICUT pins.

INPUT DATA FLOW: Resultant Output

Reference Tables

OUTPUT DATA FLOW: Pin Domain Result

REFERENCE DIAGRAM: A41

0
ADDITIONAL COMMENTS: None

0

PROCESS DEFINITION

PROCESS NAME: Convert Test Data into SIEVE Format

PROCESS ID NUMBER: A314

PROCESS PICTURE:

Convert

Tester Domain Test Data Simulation
Test Data into SIEVE Data

Format

PROCESS DESCRIPTION: This process changes the format of

test data in "SIEVE" format. SIEVE data format is

specifically required to simulate Stanford IC Tester.

INPUT DATA FLOW: Tester Domain Test Data

OUTPUT DATA FLOW: Simulation Data

REFERENCE DIAGRAM: A31

ADDITIONAL COMMENTS: An explanation of "SIEVE" data

format is attached as Appendix "E".

G-25

0

PROCESS DEFINITION

PROCESS NAME: Correlate Tester Pins & File Data

PROCESS ID NUMBER: A313

PROCESS PICTURE:

Users' Option

Test Data
Correlate

Tester Pins Tester Domain
& Test Data

Reference Tables File Data

PROCESS DESCRIPTION: This process establishes(0D
correspondence between test data received from test data

file in "Auto" mode of operation and physical location of

ICUT pins on IC tester.

INPUT DATA FLOW: Test Data

Reference Tables

OUTPUT DATA FLOW: Tester Domain Test Data

REFLRENCE DIAGRAM: A31

ADDITIONAL COMMENTS: None

G-26

PROCESS DEFINITION

PROCESS NAME: Correlate Tester Pins & Manual Data

PROCESS ID NUMBER: A312

PROCESS PICTURE:

4 User's Option

Manual Data Correlate
Tester Pins Tester Domain

& Test Data
Reference Manual Data

Tables

PROCESS DESCRIPTION: This process establishes correspon-

dence between the test data received from keyboard in

"Manual" mode of operation and physical location of ICUT

pins on IC tester.

INPUT DATA FLOW: Manual Data

Reference Tables

OUTPUT DATA FLOW: Tester Domain Test Data

REFERENCE DIAGRAM: A31
p

ADDITIONAL COMMENTS: None

G-27

PROCESS DEFINITION

PROCESS NAME: Create Array of Clock Pins

PROCESS ID NUMBER: A1222

PROCESS PICTURE:

Io

Tab Cmd-Line Create Clkpin-Array
Array of

Clock Pins

. PROCESS DESCRIPTION: This process on interpreting

first character of incoming command line "cmd-line"

to be 'K', reads the remaining line to set up an array

of clock pins and data associated with each pin.

INPUT DATA FLOW: Tab Cmd-line.

OUTPUT DATA FLOW: Clkpin-array (array containing

names of clocking pins)

REFERENCE DIAGRAM: A122

ADDITIONAL COMMENTS: A typical example of ESIM file

showing various "cmd-lines" is included in Appendix

"F" (Page F-6).

G-28

. i - . . . • _ . _

V1

PROCESS DEFINITION -

PROCESS NAME: Create Array of Effected Pins

PROCESS ID NUMBER: A12311

PROCESS PICTURE:

Create
RC Cmd-Line Array of hl Array

Effected
Pins

PROCESS DESCRIPTION: This function on receiving a RC

Cmd-Line checks the first character to be "h" or "I". On

conformation it generates an array of pin-names included in

the remaining RC Cmd-Line.

INPUT DATA FLOW: RC Cmd-Line

OUTPUT DATA FLOW: hl Array

REFERENCE DIAGRAM: A1231

ADDITIONAL COMMENTS: None

G-29

.

PROCESS DEFINITION

PROCESS NAME: Create Array of Input Pins

PROCESS ID NUMBER: A1223

PROCESS PICTURE:

Create
Tab Cmd-Line Array of Inpin-array

Input Pins

PROCESS DESCRIPTION: This process, on interpreting

first character of incoming command line to be "V", sets

up an array of input pins and adds the name and data

included in the command line to the inpin array.

INPUT DATA FLOW: Tab Cmd-line

OUTPUT DATA FLOW: Inpin-array (array containing names

of input pins)

REFERENCE DIAGRAM: A122

ADDITIONAL COMMENTS: A typical example of ESIM file
S

showing various "cmd-lines" is included in Appendix

"F" (Page F-6).

G-30

I

PROCESS DEFINITION

Pi<)CES NAME: Create Array of Monitored Pins

PROCESS ID NUMBER: A1221

PROCESS PICTURE:

Create Array
Tab Cmd-Line of Monitored Monpin-Array

Pins

PROCESS DESCRIPTION: This process on interpreting first

character of incoming cmd-line to be "W" reads the pin

names in the remaining command-line and sets up an array

containing names of the monitored pins.

INPUT DATA FLOW: Tab Cmd-line

071IPUT DATA F'LW: mnot<pin-array (array containing names

of >.,nitor.j Fi,)

P'lI,.' ",i-, i: , ,i : 1 A -*, A , : A I

ADDITIONAL C ,M1LNT:;: A ti ica ,xampi : of ESIM file

showin various "Cma-lines" is included in Appendix

"F" (Paoc F-6).

G-31

PROCESS OUTPIN ARRAY

PROCESS NAME: Create Outpin Array

PROCESS ID NUMBER: A12243

PROCESS PICTURE:

"I" Cmd-Line

Create
Marked-Monpin Array Outpin Outpin-Array

Array

PROCESS DESCRIPTION: This process scans the monpin-array

with marked input/clock pins. It segregates the unmarked pins

as output pins and generates "outpin-array" of output pins.

INPUT DATA FLOW: Marked-Monpin-Array

OUTPUT DATA FLOW: Outpin-Array

REFERENCE DIAGRAM: A1224

ADDITIONAL COMMENTS: None

G-32

PROCESS DEFINITION

PROCESS NAME: Get Pin-Designations

PROCESS ID NUMBER: A2321

PROCESS PICTURE:

Get Pin-
IC Data Designation Pin-Desig

PROCESS DESCRIPTION: This process asks the user to designate

all pin numbers successively in a selected pin-table (e.g.,

enter name of pinl = etc.) Valid response to this

process are pin-name or an X (don't care) response.

INPUT DATA FLOW: IC Data

OUTPUT DATA FLOW: Pin-Desig

REFERENCE DIAGRAM: A232

ADDITIONAL COMMENTS: None

G-46

--..-.~--..

PROCESS DEFINITION

I

PROCESS NAME: Get Pin-Class

PROCESS ID NUMBER: A2322

PROCESS PICTURE:

Get
IC Data Pin-Class Pin-Class

PROCESS DESCRIPTION: This process, asks the user to input

class of each pin successively in a selected pin-table (e.g.,

enter class for pinl = etc.). Valid response to this

prompt are X - don't care, I - input, 0 - output, K - clock,

P - power, or G- ground.

INPUT DATA FLOW: IC Data

OUTPUT DATA FLOW: Pin-Class

REFERFENCE DIAGRAM: A232

ADDITIONAL COMMENTS: None

G-4 5

S

PROCESS DEFINITION

PROCESS NAME: Get Option Response

PROCESS ID NUMBER: A2232

PROCESS PICTURE:

Get
Test Option Option Option Char

Response

PROCESS DESCRIPTIONI: This process, receives one of the

selections (A to F for Auto mode and A to D for Manual

mode as narrated in description of Node A22) from the

keyboard.

INPUT DATA FLOW: Test Option

OUTPUT DATA FLOW: Option Char

REFERENCE DIAGRAM: A223

ADDITIONAL COMMENTS: None

G-44

.

PROCESS DEFINITION

PROCESS NAME: Get Mode

PROCESS IDNUMBER: A2211

PROCESS PICTURE:

Get
Option Data Mode Mode Char

PROCESS DESCRIPTION: This process receives a character "A or

M" for Auto or Manual mode selection respectively. This

character is input by user then keyboard in response to

system prompt.

INPUT DATA FLOW: Option Data

OUTPUT DATA FLOW: Mode Char

REFERENCE DIAGRAM: A221

ADDITIONAL COMMENTS: This process is readily implemented

in "C" language by system library function (get char()).

G-43

• ... ,

PROCESS DEFINITION

PROCESS NAME: Get Keyboard Input

PROCESS ID NUMBER: A21

PROCESS PICTURE:

Get
Keyboard Input Keyboard KB Input

Input

PROCESS DESCRIPTION: This process gets any character or

character string input then keyboard by the user as a

command or data input in response to program prompts.

This process is implemented by system library functions.

(fget, fgets, & fscan)

INPUT DATA FLOW: Keyboard Input
p

OUTPUT DATA FLOW: KB Input

REFERENCE DIAGRAM: A2, A21

ADDITIONAL COMMENTS: None

I

G-4 2

I

PROCESS DEFINITION

PROCESS NAME: Get IC Characteristics

PROCESS ID NUMBER: A2313

PROCESS PICTURE:

"I Char"

Get IC
IC Data Characteristics Selection Char

PROCESS DESCRIPTION: This process, gets the selection

character from keyboard which is keyed in by the user in

response to program menu.

INPUT DATA FLOW: IC Data

OUTPUT DATA FLOW: Selection Char

REFERENCE DIAGRAM: A231

ADDITIONAL COMMENTS: None

G-41

"." "4" ' "

PROCESS DEFINITION

PROCESS NAME: Generate Storage Buffer

PROCESS ID NUMBER: A422

ni PROCESS PICTURE:

Users' Option

Generate
Test Reports Storage Buffer Address

Buffer

PROCESS DESCRIPTION: This process depending on users'

option to store test reports in an external file, sets

up a storage buffer and adds all test reports till

completion of test.

INPUT DATA FLOW: Test Reports

OUTPUT DATA FLOW: Buffer Address

REFERENCE DIAGRAM: A42

ADDITIONAL COMMENTS: None

0

0

G-40

0

PROCESS DEFINITION

PROCESS NAME: Generate Array of Output Pins

PROCESS ID NUMBER: A1224

PROCESS PICTURE:

Cmd-Line

.|,

Monpin Array Gnrt

Inpin Array Array of Outpin-Array

I output Pins
Clkpin Array_

PROCESS DESCRIPTION: This process, on receiving a

control command, establishes a cross-reference between

elements of inpin/clkpin arrays and monpin-array. It then,

generates another array from elements of monitored pins,

not marked as input/clock pins. The new array is named

fCoutpin-array".

INPUT DATA FLOW: Monpin-Array

Inpin-Array

Ckpin-array

OUTPUT DATA FLOW: Outpin-Array

REFEPENCE DIAGRAM: A122

ALDITIONAL COMMENTS: None

G-39

PROCESS DEFINITION

PROCESS NAME: Gauge Incoming Data

PROCESS ID NUMBER: A13132

PROCESS PICTURE:

Gauge

Node-Data Incoming New-Data

Data

PROCESS DESCRIPTION: This process measures the amount of

data in bytes in a given data-line [A data-line consists of

two parts, i.e., name (node-name) and data (node-data)].

INPUT DATA FLOW: Node-Data

OUTPUT DATA FLOW: New-Data

REFERENCE DIAGRAM: A1313

ADDITIONAL COMMENTS: This process is readily implemented

in "C" language by a system library routine (strlen (S)

which returns an integer giving total amount of data in

bytes in a given buffer.

G-38

PROCESS DEFINITION

PROCESS NAME: Gauge Data in Buffer

PROCESS ID NUMBER: A13131

PROCESS PICTURE:

Gauge
Node Address Data In Pre-Data

Buffer

PROCESS DESCRIPTION: This process measures the amount of

data already available in a given node buffer whose address

is passed-in.

fit INPUT DATA FLOW: Node Address

OUTPUT DATA FLOW: Pre-Data

REFERENCE DIAGRAM: A1313

ADDITIONAL COMMENTS: This process is readily implemented

in "C" language by a system library routine (strlen (S)

which returns an integer, giving total amount of data in

bytes, held in a memory buffer.

G-37

V ." .

PROCESS DEFINITION

PROCESS NAME: Formulate Test Report

PROCESS ID NUMBER: A421

PROCESS PICTURE:

Users' Option

Test Results Formulate
Test Test Report
Report

Pre-Stored
Messages

PROCESS DESCRIPTION: This process generates test report

from test results and pre-stored messages, depending on

4successful/unsuccessful completion of test.

INPUT DATA FLOW: Test Results

Pre-Stored Messages

OUTPUT DATA FLOW: Test Results

REFERENCE DIAGRAM: A42

ADDITIONAL COMMENTS: None

G-36

- - - - - - -

PROCESS DEFINITION

PROCESS NAME: Fill-in Reference Table

PROCESS ID NUMBER: A242

PROCESS PICTURE:

Data Classification Flag
'Pindes'

Table Address Fill-in
Reference IC Pin Table

Table
IC Data

PROCESS DESCRIPTION: This process receives information

regarding pin numbers, pin designations and pin class for

an ICUT and finn-Oin the selected pre-stored table.

INPUT DATA FLOW: Table Address - 'Address of selected

pre-stored table"

IC Data - Information like

Pin 14 = Vcc P

Pin 7 = Gnd G

Pin 4 = K I etc.

OUTPUT DATA FLOW: IC Pin Table

REFERENCE DIAGRAM: A24

ADDITIONAL COMMENTS: None

G-35

'4

PROCESS DEFINITION

PROCESS NAME: Extract Test Data

PROCESS ID NUMBER: Al

PROCESS PICTURE:

Extract
ESIM File Test Test Data File

Data

4 PROCESS DESCRIPTION: This process scans ESIM-file for

pertinent test data. Segregates it from other information

and restructure this test data (available in node form) to

* q test vectors and stores in a "new file".

INPUT DATA FLOW: ESIM File (VAX format)

OUTPUT DATA FLOW: Test Data File (LSI-ll format)

REFERENCE DIAGRAM: AO

4 ADDITIONAL COMMENTS: The data format of "new file" the

file in which restructures test data is stored, is changed

from VAX-system to LSI-11 microcomputer data format and

this file is transferred onto 8" floppy disk by system

library routines.

G-34

4

PROCESS DEFINITION

(i~
PROCESS NAME: Deduce Results

PROCESS ID NUMBER: A4

PROCESS PICTURE:

Users' Option

Reference Data Deduce
Test Result

Results
Resultant Input

PROCESS DESCRIPTION: This process translates the

resultant output from IC tester pins domain to IC pin

number domain and compares it with reference data for

any non-conformity. This process generates test results

from successful/unsuccessful completion of a test and

pre-stored messages. This function also directs test

results to terminal/disk file as opted by user.

* INPUT DATA FLOW: Reference Data

Resultant Output

OUTPUT DATA FLOW: Test Results
0

REFERENCE DIAGRAM: AG

ADDITIONAL COMMENTS: None

G

I. G-33

0

r . ~ .r , , .- . .ynq ,, - ', .. T .. -j. ' ... **-y ' - ~ *y V - W *-* .- , - - •

PROCESS DEFINITION

PROCESS NAME: Get Text-Line

PROCESS ID NU,'BER: AIlli

PROCESS PICTURE:

ESIM-File Get Text-Line
Tex t-L ne

PROCESS DESCRIPTION: This process reads a given ESIM.-file

line by line until end of file is reached. This process is

implemented by a system library routine (fgets)

a 1* INPUT DATA FLOW: ESIM File

OUTPUT DATA FLOW: Text-Line

REFERENCE DIAGRAM: All

ADDITIONAL COMMENTS: None

G

G-47

K.

0I

PROCESS DEFINITION

PROCESS NAME: Handle Remaining Commands

PROCESS ID NUMBER: A123

PROCESS PICTURE:

RC Cmd-Line Handle
Remaining Pin Desig Data

Classified Pin Commands
Lists

PROCESS DESCRIPTION: This process validates the "h or 1"

•commands by making a check that designated output/clock

pins are not driven to a "high/low" voltage status. This

process changes the status of a valid pin to high/low as

0 per received command.

INPUT DATA FLOW: RC Cmd-Line

Classified Pin Lists

OUTPUT DATA FLOW: Pin Desig Data

REFERENCE DIAGRAM: A12

ADDITIONAL COMMENTS: None

0

G-48

PROCESS DEFINITION

PROCESS NAME: Handle Results

PROCESS ID NUMBER: A42

PROCESS PICTURE:

Users' Option

Test Results Handle Test Report
Results

IJ

PROCESS DESCRIPTION: This process maps a test result into

ol, a test report from pre-stored messages. This process as

opted by user, allows display of test reports as terminal

or storages of test reports in an external file.

INPUT DATA FLOW: Test Results

OUTPUT DATA FLOW: Test Report

REFERENCE DIAGRAM: A4

ADDITIONAL COMMENTS: None

G-49

4,

PROCESS DEFINITION

PROCESS NAME: Initialize ICUT

PROCESS ID NUMBER: A322

PROCESS PICTURE:

Init. Flag

Init. Vector Initialize Init ICUT Flag

ICUT

IC Tester, mechanism to
apply voltages to tester

pins

PROCESS DESCRIPTION: This process simulates ICUT, with

users' supplied data or test data from test data file,

through a pre-determined number of clock cycles to force

the status of output pins to a steady state value.

INPUT DATA FLOW: Init. Vector

OUTPUT DATA FLOW: Init.ICUT flag

REFERENCE DIAGRAM: A32

ADDITIONAL COMMENTS: None

G-50

p U]

PROCESS DEFINITION

PROCESS NAME: Initialize Tester

PROCESS ID NUMBER: A321

PROCESS PICTURE:

Initialize Init.Flag
Tester

IC Tester mechanism to

apply voltages to IC
Tester Pins

PROCESS DESCRIPTION: This process physically applies

"Ground/Power" voltages to pertinent pins of IC tester to

force out all pins of IC tester of any ambiguous logic

state.

INPUT DATA FLOW: None

OUTPUT DATA FLOW: Initialization (init) flag

REFERENCE DIAGRAM: A32

ADDITIONAL COMMENTS: None

G-51

I

PROCESS DEFINITION
4i

PROCESS NAME: Locate Appropriate Table

PROCESS ID NUMBER: A2314

PROCESS PICTURE:

Selection Set

Valid Selection Select
Appropriate Table Address

Pre-Stored Tables Table

PROCESS DESCRIPTION: This process correlates the valid

selection with one of the pre-stored tables. this

correspondence has been set aprior by the programmer. S

INPUT DATA FLOW: Valid Selection

Pre-Stored Tables

OUTPUT DATA FLOW: Table Address

REFERENCE DIAGRAM: A231

ADDITION AL COM;T o

G-52

PROCESS DEFINITION

PROCESS NAME: Locate Class "K" Pin

PROCESS ID NUMBER: A2341

PROCESS PICTURE:

Locate
IC Pin Table Class K - Pin

"K"
Pin

PROCESS DESCRIPTION: This process scans the class-field

of IC pin table and points out an element whose class

matches with "K".

0INPUT DATA FLOW: IC Pin Table

OUTPUT DATA FLOW: K - Pin

REFERENCE DIAGRAM: A234

ADDITIONAL COMMENTS: This process is repeated to scan the

whole IC pin table for "K" class (clock) pins.

G-53

PROCESS DEFINITION

PROCESS NAME: Locate Class "0" Pin

PROCESS ID NUMBER: A2361

PROCESS PICTURE:

Locate
IC Pin Table Class "0" O-Pin

Pin

PROCESS DESCRIPTION: this process scans the class-field of

IC pin table and points out a. element whose class matches

with "0".

INPUT DATA FLOW: IC Pin Table

OUTPUT DATA FLOW: O-Pin

REFERENCE DIAGRAM: A236

ADDITIONAL COMMENTS: This process is repeated to scan the

whole IC pin table for "0" class (output) pins.

G-54

S,

PROCESS DEFINITION

PROCESS NAME: Locate Class "P/G" Pin

PROCESS ID NUMBER: A2351

PROCESS PICTURE:

Locate
IC Pin Table Class "P/G" PG - Pin

PROCESS DESCRIPTION: This process scans the class-field

of IC pin table and points out an element whose class

matches with "P/G".

INPUT DATA FLOW: IC Pin Table

OUTPUT DATA FLOW: PG-Pin

REFERENCE DIAGRAM: A23

ADDITIONAL COMMENTS: This process is repeated to scan the

whole IC pin table for all power/ground (P/G) class pins.

G-55

PROCESS DEFINITION

PROCESS NAME: Locate Test Node in Monpin Array

PROCESS ID NUMBER: A1312

PROCESS PICTURE:

Node-Name Locate Test
Node In Node-Address
Monpin

Pin-Desiq Data Array

PROCESS DESCRIPTION: This process scans the monpin array with

"node name". If not found, it scans the array of input pins

P to find the match and returns the location (element number) of

the matched pin.

INPUT DATA FLOW: Node-Name

Pin-Desig Data

* Monpin Array

uInpin Array

Clkpin Array

Outpin Array

OUTPUT DATA FLOW: Node-Address i

REFERENCE DIAGRAM: A131

ADDITIONAL COMMENTS: None

G-56

I

PROCESS DEFINITION -4

S

PROCESS NAME: Mark Clk-pins

PROCESS ID NUMBER: A12242

PROCESS PICTURE:

"I" Cmd-Line

Chg-Monpin-Array Mark
Mark Marked-Monpin-Array

Clkpins
Clkpin-Array

PROCESS DESCRIPTION: This process takes all elements of

clkpin-array (array formed up by sequence of clock pins) one

by one and matches each with all elements of array of

monitored pins (monpin-array) and generates a cross-reference

between elements of both arrays.

INPUT DATA FLOW: Chg-Monpin-Array

Clkpin-Array

OUTPUT DATA FLOW: Marked-Monpin-Array

REFERENCE DIAGRAM: A1224

ADDITIONAL COMMENTS: None
G

G-57 "

., . . .o_ , . i - -, - . . - -- . , • - • , . - -

PROCESS DEFINITION

PROCESS NAME: Mark Inpins

PROCESS ID NUMBER: A12241

PROCESS PICTURE:

"I" Cmd-Line

Monpin-Array
Mark Chg-Monpin-Array
Inpins

Inpin Array

PROCESS DESCRIPTION: This process takes all elements of

inpin-array (array formed up by sequence of input pins) one by

one and matches each with all elements of array of monitored

pins (monpin-array) and generates a cross-reference between

elements of both arrays.

INPUT DATA FLOW: Monpin Array

Inpin Array

OUTPUT DATA FLOW: Chg-Monpin-Array

REFERENCE DIAGRAM: A1224

ADDITIONAL COMMENTS: None

G-58

PROCESS DEFINITION

PROCESS NAME: Perform Test

PROCESS ID NUMBER: A32

PROCESS PICTURE:

Simulation Data Perform Resultant Output
Test

PROCESS DESCRIPTION: This process, initializes the IC

tester, and ICUT before proceeding with actual test. It

also applies test vector to IC tester to simulate ICUT and

samples the output of IC under test for resultant output.

INPUT DATA FLOW: Simulation Data

I

OUTPUT DATA FLOW: Resultant Output

REFERENCE DIAGRAM: A3

ADDITIONAL COMMENTS: Read description of Node A3

also (Page A-34).

G-59

I

PROCESS DEFINITION -

PROCESS NAME: Process Test Data

PROCESS ID NUMBER: A31

PROCESS PICTURE:

Users' Option

Process Reference Data
Input Data Test

Data Simulation Data

PROCESS DESCRIPTION: This process establishes correspon-

dence between test data vectors and pins of IC

tester which are to be excited to effect simulation of

ICUT. This process also changes the data format of input

data into "SIEVE" format as it is required for operation of

Stanford IC tester.

INPUT DATA FLOW: Input Data

OUTPUT DATA FLOW: Reference Data

Simulation Data

1.E RIENCE DIAGRAM: A3

ADDiTIONAL COMMENTS: Read description of Node A3 also

(1ace A-34)

G-60

PROCESS DEFINITION

p
PROCESS NAME: Select Operating Options

PROCESS ID NUMBER: A23

PROCESS PICTURE:

Data Classification
Flags

"UOP"

Select
Option Data Operating 10 Users' Option

Options

PROCESS DESCRIPTION: This process sets ten flags to

execute the program in a manner, se±ectei by user, from

system menues.

INPUT DATA FLOW: Option Data

OUTPUT DATA FLOW: Users' Option

REFERENCE DIAGRAM: A2

ADDITIONAL COMMENTS: Details of ten users' option and

associated flags are included in description of Node A23.

GI

G-7 4!

PROCESS DEFINITION

PROCESS NAME: Select Mode

PROCESS ID NUMBER: A231

PROCESS PICTURE:

Data Classification
Flags

Mode Input
Option Data Select

Mode
Test-File Name

PROCESS DESCRIPTION: This process in response to system

prompt receives "Auto/Manual" as preferred mode of

operation. In case of "Auto-Mode" selection, user is

asked to input name of respective test data file.

INPUT DATA FLOW: Option Data

IC Nomenclature

Mode of Operation

Name of Test File

OUTPUT DATA FLOW: Mode Output

Test-File Name

REFERENCE DIAGRAM: A23

ADDITIONAL COMMENTS: None

G-73

PROCESS DEFINITION

PROCESS NAME: Select Appropriate Table

PROCESS ID NUMBER: A241

PROCESS PICTURE:

Data Classification
Flags

1 Ichar

IC Data Select
Appropriate Table Address

Table
Pre-Stored Tables

PROCESS DESCRIPTION: This process, selects one of the

five pre-stored tables, on receiving size and pin infor-

mation of an ICUT. The pre-stored table contains data

to cross reference the ICUT pins and pins of IC tester.

INPUT DATA FLOW: IC Data

Pre-Stored Tables

OUTPUT DATA FLOW: Table Address

REFERENCE DIAGRAM: A24

ADDITIONAL COMMENTS: Details of pre-stored tables is

included in description of Node A24.

G-72
S1

-- J

PROCESS DEFINITION

PROCESS NAME: Segregate Reference Data

PROCESS ID NUMBER: A311

PROCESS PICTURE:

Segregate Reference Data

Test Data File Reference
Data Test Data

PROCESS DESCRIPTION: This process reads in data form test

data file (restructured ESIM file), separates out test data

and expected output (reference data) for that particular

simulation.

INPUT DATA FLOW: Test Data File (Restructured ESIM File)

OUTPUT DATA FLOW: Reference Data

Test Data

REFERENCE DIAGRAM: A31

ADDITIONAL COMMENTS: None

G-71

PROCESS DEFINITION

PROCESS NAME: Segregate into Class

PROCESS ID NUMBER: A223

PROCESS PICTURE:

Data Classification

Flags

Segregate
Input Text Into KB Text

Class

PROCESS DESCRIPTION: This process segregates all the

input text received in response to system prompts in three

broad categories of IC, Option & Test Data. The combina-

tion of all three data categories is termed as KB text.

INPUT DATA FLOW: Input Text

OUTPUT DATA FLOW: KB Text

IC Data

• Option Data

• Text Data

REFERENCE DIAGRAM: A22

ADDITIONAL COMMENTS: None

G-70

PROCESS DEFINITION

PROCESS NAME: Segregate Data & Node Name

PROCESS ID NUMBER: A1311

PROCESS PICTURE:

Segregate Node-Name
Data-Line Data &

Node
Name Node-Data

PROCESS DESCRIPTION: This process partitions a given

data-line into node name and associated node data by

scanning the whole line and sensing the presence of

colon mark ":".

INPUT DATA FLOW: Data-Line

OUTPUT DATA FLOW: Node-Name

Node-Data

REFERENCE DIAGRAM: A131

ADDITIONAL COMMENTS: Physical characteristics/details of a

data-line in an ESIM file are shown on Page F-6.

G-69

PROCESS DEFINITION

PROCESS NAME: Sample ICUT Output

PROCESS ID NUMBER: A324

PROCESS PICTURE:

Users' Option

qI

IC Pin Values Sample
ICUT Resultant Output

Output
Reference Tables

PROCESS DESCRIPTION: This process samples and stores the

status of all pins of ICUT after it has been activated.

INPUT DATA FLOW: IC Pin Values

OUTPUT DATA FLOW: Resultant Output

REFERENCE DIAGRAM: A32

ADDITIONAL COMMENTS: The sampled value of ICUT pins is

available to other function for any processing.

G-68

°p

PROCESS DEFINITION

PROCESS NAME: Restructure Test Data

PROCESS ID NUMBER: A13

PROCESS PICTURE:

Pin-Desig Data Restructure
Test Restructured
Data Test Data

Data Line

PROCESS DESCRIPTION: This process interprets a given data

line and stores all the test data pertaining to a given

node in its respective buffer. This process translates the

test data from node form to test vectors and stores it in

an external file whose name is provided by user.

INPUT DATA FLOW: Pin-Desig Data

Data-Line

OUTPUT DATA FLOW: Restructured Test Data

REFERENCE DIAGRAM: Al

ADDITIONAL COMMENTS:

G

G-67

PROCESS DEFINITION

PROCESS NAME: Read First Character

PROCESS ID NUMBER: All21

PROCESS PICTURE:

Read
Text-Line First Test-Char

Character

PROCESS DESCRIPTION: This process on receiving a text-

line as input, considers it as an array of element and

access its first element, which is termed as test-char

tacter).

INPUT DATA FLOW: Text-Line

OUTPUT DATA fLOW: Test-Char

REFERENCE DIAGRAM: A112

ADDITIONAL COMMENTS: None

G-66

i

PROCESS DEFINITION

PROCESS NAME: Read ESIM-File

PROCESS ID NUMBER: All

PROCESS PICTURE:

Read Cmd-Line

ESIM File ESIM

File
Data-Line

PROCESS DESCRIPTION: This process leads in given ESIM

file from the system memory line by line and classifies

each incoming line to be command-line or data-line.

INPUT DATA FLOW: ESIM-FiPe

OUTPUT DATA FLOW: Cmd-Line

Data-Line

REFERENCE DIAGRAM: Al

ADDITIONAL COMMENTS: A bried explanation of all commands

encountered in ESIM files and a sample of typical file is

attached as Appendix "D".

G-65

PROCESS DEFINITION

PROCESS NAME: Prompt User to Select Option

PROCESS ID NUMBER: A2231

PROCESS PICTURE:

Valid Mode

Prompt User
to Select Option Set

Options

PROCESS DESCRIPTION: This process on deciding the validity

of node Auto or Manual, offers from selected mode a set of

sub-options to the user in a menu. The details of sub-

options are narrated in description of Node A22.

INPUT DATA FLOW: -

OUTPUT DATA FLOW: Option Set

REFERENCE DIAGRAM: A223

ADDITIONAL COMMENTS: None

G-64

PROCESS DEFINITION

PROCESS NAME: Prompt User to Mark IC-Characteristics

PROCESS ID NUMBER: A2311

PROCESS PICTURE:

Prompt User
To Mark Selection Set

IC
Characteristics

* PROCESS DESCRIPTION: This process activated in sequence

after a valid users' option has been made, offers a menu

containing various combinations of IC Characteristics

[i.e., A) 20 pin dual in line B) 40 pin dual in line,

C) 40 pin square flat pack, etc.] The user is asked to make

one selection which exactly matches the physical description

of IC to be tested.

INPUT DATA FLOW: -

OUTPUT DATA FLOW: Selection Set

REFERENCE DIAGRAM: A231

ADDITIONAL COMMENTS: Tables containing data are stored

aprior by the programmer which set correspondence between

IC pins and tester pins. If no physical description matches

that of IC to be tested, a new table will have to be

setup for testing that IC.

G-63

...0 _. . .: ']

PROCESS DEFINTION

4|
PROCESS NAME: Prompt for Name of Test File

PROCESS ID NUMBER: A2213

PROCESS PICTURE:

Mode Input

I (Auto)

Prompt for

Name of Name Flag

Test File

PROCESS DESCRIPTION: This process in case of "Auto-Mode"

selection asks user to input name of respective test file and

sets a flag to process next input (name of test file) from

keyboard.

INPUT DATA FLOW:

OUTPUT DATA FLOW: Name Flag

REFERENCE DIAGRAM: A221

ADDITIONAL COMMENTS: None

G-62

!

PROCESS DEFINITION

PROCESS NAME: Process Users' Input

PROCESS ID NUMBER: A2

PROCESS PICTURE:

Users' Option
Process

Keyboard Input Users'
Input Manual Data

PROCESS DESCRIPTION: This process prompts the user to

input data/commands then the keyboard in response to

the menu offered to the user. This process sets various

£ *option flags for mode of operation and receives IC

characteristic data to setup stage to conduct tests.

This process also validates the input test data in

manual mode of operation.

INPUT DATA FLOW: Keyboard Input

OUTPUT DATA FLOW: Manual Data (Test data for manual
mode of operation)

Users' Option (Please read description
of nodes A2 & A23 for
details)

REFERENCE DIAGRAM: AO

ADDITIONAL COMMENTS: None

G-61

PROCESS DEFINITION

PROCESS NAME: Set Data-Classification Flags

PROCESS ID NUMBER: A212

PROCESS PICTURE:

KB Input Set Data KB Test
Classification

System Prompt Flags Data Classification
Flags

PROCESS DESCRIPTION: This process sets one of three data

classification flagsi.e., idflag, opflag, and tdflag from

system prompt to classify the keyboard input in three broad

categories of IC data, Option Data and Test Data for

further processing.

INPUT DATA FLOW: KB Input

Systcm Prompt

OUTPUT DATA FLOW: (B Text

Data Classification Flag

REFERENCE DIAGRAM: A21

ADL;TIONAL COMMENTS: None

G-75

PROCESS DEFINITION

PROCESS NAME: Set Flag for Auto

PROCESS ID NUMBER: A2212

PROCESS PICTURE:

Set Flag
Mode Char for Auto Mode Input

PROCESS DESCRIPTION: This process sets respective flags to

be true for"Auto or Manual" mode of operation on receiving

"mode character" from keyboard.

INPUT DATA FLOW: Mode Char

OUTPUT DATA FLOW: Mode Input

REFERENCE DIAGRAM: A221

ADDITIONAL COMMENTS: None

G-76

S

PROCESS DEFINITION

PROCESS NAME: Set Option Flag

PROCESS ID NUMBER: A2234

PROCESS PICTURE:

Option Set

Set
Valid Option Option Users' Option

Flag

PROCESS DESCRIPTION: This process on receiving a valid

option, sets the respective flag (nomenclature of all flags

listed in description of Node A22) to be true.

INPUT DATA FLOW: Valid Option

OUTPUT DATA FLOW: Users' Option

REFERENCE DIAGRAM: A223

ADDITIONAL COMMENTS: None

G-77

PROCESS DEFINITION

PROCESS NAME: Setup an Array of Input Pins

PROCESS ID NUMBER: A2322

PROCESS PICTURE:

Setup An
I - Pin Array of Input Pin Table

Input
Pins

PROCESS DESCRIPTION: This process adds each "I" class

elements of IC Pin Table to a separate array which has been

defined aprior by the programmer.

0 INPUT DATA FLOW: I-Pin

OUTPUT DATA FLOW: Input Pin Table

01 REFERENCE DIAGRAM: A233

ADDITIONAL COMMENTS: This process is repeated to add all

encountered elements by Node A2331.

G-78

PROCESS DEFINITION

PROCESS NAME: Setup an Array of Output Pins

PROCESS ID NUMBER: A2362

PROCESS PICTURE:

Setup an
0 - Pin an Array Output Pin Table

of Output
Pins

PROCESS DESCRIPTION: This process, adds each "0" class

elements of IC pin table to a separate array, which

has been defined aprior by the programmer.

INPUT DATA FLOW: O-Pin

OUTPUT DATA FLOW: Output Pin Table

REFERENCE DIAGRAM: A236

ADDITIONAL COMMENTS: This process is repeated to add

all encountered elements by Node A236.

G-79

." - - - . • f - . " . < ° . - , . * - - . . . 4 - -

PROCESS DEFINITION

PROCESS NAME: Setup an Array of Pwr/Gnd Pins

PROCESS ID NUMBER: A2352

PROCESS PICTURE:

Setup an Array
PG - Pin of Pg Pin Table

Pwr/Gnd Pins

PROCESS DESCRIPTION: This process adds each "P/G" class

elements of IC Pin Table to a separate array, which has

been defined aprior by the programmer.

47 INPUT DATA FLOW: PG-Pin

OUTPUT DATA FLOW: PG Pin Table

REFERENCE DIAGRAM: A235

ADDITIONAL COMMENTS: This process is repeated to

add all encountered elements by Node A2351.

G-80

-

PROCESS DEFINITION

PROCESS NAME: Setup Clock Pins' Table

PROCESS ID NUMBER: A244

PROCESS PICTURE:

Setup
IC Pin Table Clock Pins' Clk Pin Table

Table

PROCESS DESCRIPTION: This process, scans the reference

table after it has been completely filled-in, and sets

up a separate table of pins marked as "clock" pins.

INPUT DATA FLOW: IC Pin Table

OUTPUT DATA FLOW: Clk Pin Table

REFERENCE DIAGRAM: A24

ADDITIONAL COMMENTS: None

G-81

PROCESS DEFINITION

PROCESS NAME: Setup Input Pins' Table

PROCESS ID NUMBER: A243

PROCESS PICTURE:

SSetup
IC Pin Table Input Pins' Input Pin Table

Table

PROCESS DESCRIPTION: This process scans the reference

table after it has been completely filled-in, and sets

up a separate table of pins - marked as "Input" Pins.

INPUT DATA FLOW: IC Pin Table

OUTPUT DATA FLOW: Input Pin Table

REFERENCE DIAGRAM: A24

ADDITIONAL COMMENTS: None

G-82

PROCESS DEFINITION

PROCESS NAME: Setup Options

PROCESS ID NUMBER: A233

PROCESS PICTURE:

Valid Mode

Setup
Test Options Options Users' Option

PROCESS DESCRIPTION: This process sets ten different

flags to be "true/false", to execute the program in a

manner selected by user from system menues.

INPUT DATA FLOW: Test Options

OUTPUT DATA FLOW: Users' Option (10 flags)

REFERENCE DIAGRAM: A22

ADDITIONAL COMMENTS: The details about users' options

and associated flags are included in description of Node

A23.

G-83

PROCESS DEFINITION

PROCESS NAME: Setup Output Pins' Table

PROCESS ID NUMBER: A246

PROCESS PICTURE:

Setup
IC Pin Table Output Pins' Output Pin Table

Table

PROCESS DESCRIPTION: This process, scans the reference

table after it has been completely fillin and sets up

a separate table of pins marked as "output" pins.

INPUT DATA FLOW: IC Pin Table

OUTPUT DATA FLOW: Output Pin Table

REFERENCE DIAGRAM: A24

ADDITIONAL COMMENTS: None

GI

I

PROCESS DEFINITION

PROCESS NAME: Setup Power/Ground Pins Table

PROCESS ID NUMBER: A245

PROCESS PICTURE:

Setup

IC Pin Table Power/Ground PG Table

Pins' Table

PROCESS DESCRIPTION: This process scans the reference

table after it has been completely filled in and sets

up a separate table of pins marked as "Power/Ground"

pins.

INPUT DATA FLOW: IC Pin Table

OUTPUT DATA FLOW: PG Table

REFERENCE DIAGRAM: A24

ADDITIONAL COMMENTS: None

G-85

PROCESS DEFINITION

PROCESS NAME: Setup Reference Tables

PROCESS ID NUMBER: A24

PROCESS PICTURE:

Data Classification
Flags

Setup
IC Data Reference Reference Tables

Tables

PROCESS DESCRIPTION: This process selects one of the five

pre-stored tables depending on physical characteristics of

an IC to be tested. The selected tables contain cross-

reference data between ICUT pins and IC tester pins. The

selected table is filled by prompting user to input infor-

mation regarding pin names and pin numbers of an ICUT.

INPUT DATA FLOW: IC Data

OUTPUT DATA FLOW: Reference Tables

REFERENCE DIAGRAM: A2

ADDITIONAL COMMENTS: Details about pre-stored tables are

included in descriptions of Node A2 and A24.

G-86

PROCESS DEFINITION

I

PROCESS NAME: Simulate ICUT

PROCESS ID NUMBER: A323

PROCESS PICTURE:

Init ICUT Flag

Simulate
Test Vector ICUT IC Pin Values

IC Tester mechanism to
apply voltages to tester
pins

PROCESS DESCRIPTION: This process, after being supplied

with a test vector and a flag to proceed, applies

corresponding voltages to effect simulation.

INPUT DATA FLOW: Test Vector

OUTPUT DATA FLOW: IC Pin Values

REFERENCE DIAGRAM: A32

ADDITIONAL COMMENTS: This process also translates the 3

clocking sequence into voltage variation at designated

clock-pin.

G-87

PROCESS DEFINITION

PROCESS NAME: Sto:e Data in Selected Table

PROCESS ID NUMBER: A2323

PROCESS PICTURE:

Pin-Design
Store Data

Pin-Class In Selected IC Pin Table
Table

Table Address

PROCESS DESCRIPTION: This process stores the designated

names and class of all pins. It stores this information in

respective fields of selected table for future reference.

INPUT DATA FLOW: Pin-Desig

Pin-Class

Table Address

OUTPUT DATA FLOW: IC Pin Table

REFERENCE DIAGRAM: A232

ADDITIONAL COMMENTS: None

G-88

r . . . J " " ' . .. " m m m ' - - - W

-fii961 SYSTEM DESIGN OF UTOMTED VLSI (VERY LARGE SCALE 4/4
INTEGRATED) TEST STATIO..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. S TARI

UNCLASSIFIED DEC 84 AFIT/GE/EE/84D-27 F/G 9/5 UL

EuN.
Illa lllllI

Illl

II I UI!ll 8 ilII2
3 2O 2 . 2

111112 .4

MICROCOPY RESOLUT ION TLS[CHART

0

PROCESS DEFINITION

PROCESS NAME: Store Test File Name

PROCESS ID NUMBER: A2214

PROCESS PICTURE:

Name Flag

Store

Test File Test File Test File Name

Name

* PROCESS DESCRIPTION: This process, activated by control flag

"name flag" receives name of test file input then the key-

board in response to the system prompt and stores this name

*in a specific buffer for future reference.

INPUT DATA FLOW: Test File

@1 OUTPUT DATA FLOW: Test File Name

REFERENCE DIAGRAM: A221

ADDITIONAL COMMENTS: This process, is readily implemented

in "C" language by system library function (scanf (...)).

G-89

PROCESS DEFINITION

PROCESS NAME: Store Node Data

PROCESS ID NUMBER: A131

PROCESS PICTURE:

Data Line Store Buffer Overflow
Node
Data

Pin-Desig Data Node Test Data

PROCESS DESCRIPTION: This process, segregates node data

in respective of a pin and stores it in its associated

buffer. It generates an overflow signal if incoming data

exceeds the remaining capacity of the buffer for a•
particular pin.

INPUT DATA FLOW: Data Line

Pin Desig Data

OUTPUT DATA FLOW: Buffer Over Flow

Node Test Data

REFERENCE DIAGRAM: A13

ADDITIONAL COMMENTS: An example of ESIM file showing

typical format of a "data line" is included in

Appendix "D".

G-90

.

PROCESS DEFINITION

PROCESS NAME: Tabulate Command Data

PROCESS ID NUMBER: A12

PROCESS PICTURE:

Tabulate
Cmd-Line Command Pin-Desig Data

Data

PROCESS DESCRIPTION: This process interprets the command

in a given "Cmd-Line" to setup arrays to store names and

related data in respective of all monitored pins. This

process also generates an array of output pins and

establishes reference between elements of input output and

clk. pin arrays and master array containing all monitored

pins.

INPUT DATA FLOW: Cmd-Line

OUTPUT DATA FLOW: Pin-Desig Data - Pointers to arrays
describing all types
of IC pins.

REFERENCE DIAGRAM: Al

ADDITIONAL COMMENTS: Please read description of Node A12

for details.

G-91

6

PROCESS DEFINITION

PROCESS NAME: Tabulate Test Pins

PROCESS ID NUMBER: A122

PROCESS PICTURE:

Tabulate
Tab Cmd-Line Test Classified Pin

Pins Lists

PROCESS DESCRIPTION: This process generates arrays of

monitored pins, input pins and clock pins on receiving a

specific command. It establishes reference between above

three arrays and generates an array of output pins. This

process also stores related data for each pin in its

respective buffers.

INPUT DATA FLOW: Tab Cmd-Line

OUTPUT DATA FLOW: Classified Pin Lists

" Array of Monitored Pins

" Array of Input Pins

" Array of Clock Pins

Array of Output Pins

REFERENCE DIAGRAM: A12

ADDITIONAL COMMENTS: None

G-92

"" PROCESS DEFINITION

PROCESS NAME: Validate Command Line

PROCESS ID NUMBER: A1231

PROCESS PICTURE:

RC Cmd-Line Validate
Command Valid Cmd-Line
Line

Classified Pin Lists

PROCESS DESCRIPTION: This process, on interpreting first

character of incoming command-line to be "h or I" scans

the arrays of output and clock pins to insure that any

designated pin from this class is not forced to have "high/

low" status. It marks the command to be valid if no out-

put/clock pin is effected by "h/l" command.

INPUT DATA FLOW: RC Cmd-Line

Classified Pin Lists

OUTPUT DATA FLOW: Valid Cmd-Line

REFERENCE DIAGRAM: A123

ADDITIONAL COMMENTS: None

G-93

II

... . % ,'i~

0i

PROCESS DEFINITION

PROCESS NAME: Validate Manual Data

PROCESS ID NUMBER: A25

PROCESS PICTURE:

Users' Data Classification
Option 1 1 Flags

Reference Tables Validate
Manual Manual Data
Data

Input Test Data

PROCESS DESCRIPTION: This process activated only during

"Manual" node of operation checks to insure that input test

data does not overlap any designated ouput clock or Power/

Ground Pins.

INPUT DATA FLOW: Reference Tabvles

Input Test Data

OUTPUT DATA FLOW: Manual Datao

RPLIERENCE DIAGRAM: A2

ADDITIONAL COMMENTS: None
0

G-94

S

.0

PROCESS DEFINITION

PROCESS NAME: Verify Mode

PROCESS ID NUMBER: A232

PROCESS PICTURE:

Mod- Input

NTest File Name
Verify Vali Mic :e
Mode

Test Data Files'

Directory_

0

PROCESS DESCRIPTION: This process checks if a particular

test-data file is available for possible operation in case

of auto mode selection. It generates an error, if test-

data file for an ICUT is not available.

INPUT DATA FLOW: Test File Name

Test Data Files' Directory

OUTPUT DATA FLOW: Valid Mode

REFERENCE DIAGRAM: A23

ADDITIONAL COMMENTS: None

G-95

0'

..

Appendix "H"

User Manual

ETD(1) UNIX Programmer's Manual ETD(l)

"e

L"D - Extract Test Data

1-,)it ion

ETD is a program that extracts pertinent test data from

i :iven ESIM file. Any ESIM file consists of simulator

test runs for a particular VLSI circuit during its design

4 *) prhase. A typical format of ESIM file is shown on Page H-3.

E'TD segregates node data and converts it into vector form.

A typical resultant output is shown on Page H-4.

To use ETD, you must input the name of ESIM file and

name of file in which you want to store test vectors. The

program will ask for the names of these files in interactive

manner during its execution.

An examole is shown below:

etd <cr>

ENTER NAME OF ESIM (TEST-DATA) FILE:

node-data <cr>

ENTER NAME OF STORAGE FILE:

warehouse <cr>

H-1

[%- ."- "- .-. " - . • : . . "t

If the "test data" file does not exist in the same

directory, the program will quit after printing a message

that "test data" file couldn't be opened for reading.

If "test-data" file actually exists, the program (ETD)

would list the names of input, clock output pins and

:-,sturctured test vector, along with respective reference

output vector in the "storage" file, as shown on Page H-4.

The column Nos. 1 and 2 of output (Page H-4) display

input and output test vectors. The individual bits of these

vectors correspond to test pins listed in inpins and outpins

in the same order. The "f" in the 3rd column indicates the

last of test vectors and "c" in the 4th column indicates a

change in designation of test pins.

See Also

AFIT/GE/EE/84D-27 MS Thesis

Author

Saleem

Bugs

1. User has to input name of a valid ESIM file, otherwise

ETD would produce some unintelligent output.

2. The last line of ESIM file must not be a command line

or a data line; it should be a comment line.

H-2

Typical ESIM-File
(Data Format)

w clock serial-in word-mark wO wl w2 w3 to tl t2 t3 t4 t5
V clock 01010101010101010101
V serial-in 00110011001100110011
V word-mark 00000011000000000011
V reset 11000000000000000000
I
R

456 transistors, 220 nodes (0 pulled up)
Initialization took 285 steps
t5=X t4=X t3=X t2=X tl=X tO=X w3=X w2=X wl=X wO=X word-
mark=X serial in=X clock=X
h inputs: Vdd qnd
I inputs: GND vdd reset
t5=0 t4=0 t3=0 t2=0 tl=0 tO=0 w3=0 w2=0 wl=0 wO=0 word-
mark=l serial-in=l clock=l
h inputs; Vdd gnd clock serial-in word-mark
1 inputs: GND Vdd reset
00110011001100110011:serial in
)00000011000000000011:word mark
00000000000000000000:wO

)00000000000000000000:wl
00000000000000000000:w2C,) 00000000000000000000:w3

)00000000000000000000:tO
00000000000000000000:tl
)00000000000000000000:t2
)00000000000000000000:t3
)00000000000000000000:t4
)00000000000000000000:t5
t5=0 t4=0 t3=0 t2=0 tl=0 tO=0 w3=0 w2=0 wl=0 wO=0 word-
mark=l serial-in=l clock=l
h inputs: Vdd gnd clock serial-in word-mark
1 inputs: GND vdd reset
456 transistors, 220 nodes (0 pulled up)

H

I-

Typical Output
(Data Format)

IMPIN 4 clock serial-in word-mark reset
CLKPIN 0
OUTPIN 10 wO wl w2 w3 tO tl t2 t3 t4 t5
>0001 0000000000 1 0
>1001 0000000000 1 0
>0100 0000000000 1 0
>1100 0000000000 1 0
>0000 0000000000 1 0
>1000 0000000000 1 0
>0110 0000000000 1 0
>1130 0000000000 1 0
>0000 0000000000 1 0
>1000 0000000000 1 0
>0100 0000000000 1 0
>1100 0000000000 1 0
>0000 0000000000 1 0
>1000 0000000000 1 0
>0100 0000000000 1 0
>1100 0000000000 1 0
>0000 0000000000 1 0
>1000 0000000000 1 0
>0110 0000000000 1 0
>1110 0000000000 0 0

- " " " "• '

1. eter-, j-awrence j. Sc' t war-e Des izri: trpt nccst

-------- cPs N-2N Ycrk: Yo uroin 0 ress, 1982.

7:.Prec~rarRoger S. ScCt ware Eric m riser r,v: pq

and ie:imrt Technique" (Sc ftech Dc'imrot t9rQ78
.Nc'-vember- 1976.

C T- --4-- c. -t - wz-

5.Ker:maPrian W. & Ri-tc2 is-. Denrms 'yi 7h.
-- roramn: r' angusue, Eni: lew-:-c-z C:is er ns

Pr sotice-Hl 1, inc. 2. 27E.

E. Kocran, SteDner, G. D0-00var,rn-rz n , e
Hayden Eiook Ccrpariy, inc. 19637.

7. p'ium, -nn~s -er n t- -rvrr -t -~ta -3
z~its.New Jersey: '-

B. Deter, -awrerice J. "Soft a-e Recr-- im
Q:orrnvsc-i tioni Tech--ra CUe ',)t-E~ '

6E. No. 9, September- 198C0.

9. I&rthN~laus."Q-rrr:'vc:"- -

r.-f ri-rio-t " Cor',_.ruri zt ionfs of --. c

Pr1 1 S7i (P P I1- 76

RE'. Re'er-. Donal1d J. & Tatrs- '

CCc-: o PeQyuarerptnt IEC rt1Y"*7

Vr. S

VITA

Sqn. Ldr. Saleem Tariq was born on 2nd November 1952

in Wah Cantt, Pakistan. He did his matriculation and

F.Sc with distinction from PAF College, Sargodha in 1969

and 1971 respectively. He graduated from the College of

Aeronautical Engineering, Karangi Creek (Karachi) in 1976

with a Bachelor of Engineering degree in Avionics. He was

awarded a permanent commission in the Pakistan Air Force on

his graduation and since then has been appointed to various

duties as an Electronic Maintenance Officer. In June 1983,

he was assigned to the School of Engineering, Air Force

Institute of Technology to complete his master's degree in

Electrical Engineering.

Permanent Address: 85-A
Lalarukh, Wah Cantt
Pakistan

Vita

'LCOI-- T YCLAST,Ik ICA T ION Of THIS PAI,L

REPORT DOCUMENTATION PAGE
HL'IOR T Sk .,Mi TV ILASSIF 1CAI ION 11 iLS HllWlI I VI, MA FFI N,.

2. SE:UH IT Y CLASSIF ICA TION AUTHORI VI Y 3 ItRIBUOTON,AVAiI ABILITY UFP REPORT

2b L) L I A" If- It AT ION.,UUWNCR A 0IN I. '-t-tt Lt~.z~p i-t ~ u!I et
dI ;t I Ih l li i t'll 111i 1 11111lod .

4 Pit Hi ORMINUt ORI-ANZATION REPORT NUMBERiSI) MUNI TOR INGO OAGAN I AT IONA LPORIT NUMBER(S)

be* NAMIt. 01F- PERF#ORMING ORGANIZAT ION Ut, OFF- ICE SYMBOL Id NAME OF MONITORING, ORGANIZATION

tic ADOLJRES t , . lat aiu~und /I/, CX.d~- It) ADDRIESSflity sit,. jna /11' i le

Air t-ilr hIst itt lte dt Ill(- 1Il[ii)iil

t Pitt t virsori A i r VIor 1, 0~s

He NANAI Of k-k N[INGSPONSOFFING t OFF ICE SYMBOL 9. PROCUREMENT INSTRumtrT IDENTIFICATION NUMBE
iUR(ANiZATIuN I a!2

.ppicable,

IB.- ,H 'i2C .I ii Il., w d /11, L.-1 10) SOURCE OF uiNDINi, NOS

PROORAM PH()iIFCT TASK WORK UNIT

>N'Kix Oc E MFpr NO NO) NO NO

£ li .- ,,ct (c l.t'c ,h i SI .111 It 11p i Ili-ll lit 'o -

112 Pt-INAL AiIHORISI
* itl I Sr. bitlecmlta 'kii, P

t ikisi :,n Ali IluiFI

IPF) REPORT 131 TIVIE COVERED 14 DATEZ OF REPORT 0,if, Ytll) UN 15 PAGE COUNT

16 StPPi Or Nit N lAN NOTATION !!C« TP

IVlS A: H-

'il? tirII I I I' II I T I i. I I li II li t l till

--I)I~j) Hw I iI I- 1vl. II l -I I ingl I~ t'1iid

I it . (-"111 5 (Ill I l' I I Iwt IX it t- I lit H j iti l I t 't I'll II I I it I I I M I' IN

I it - I- -sl11111 o t r I -1 x I r.I(I(, 1I I1 ; IIIi I 1

, I l'Ilt-lTION AVAILABILITY 0f: AlPS H-AI, .11 AWITRAcT ';[UthI Y I i t KATION

~Ni Fil) iNLIiT l SAME AT, IWO' (, FI(0,TERS

NMI,~ Rlr,,PONSIBLlt INDiVIUUiAt 221, IF. FhtiNt ,W061 it .'2, OF- FI SYMBOL

DD FORM~N 1473, 83 APR P tu lION Of- I1JAN731', I)IiI, I t I. Im tiss i I itd

* CURI I Y C IASS% FIC AT ION OF THIS PAGE

tIester and provide t est ,indl refe ri-Ien (LI da. 'Ille tistoi will have
t he (apabIi 1 it y toi gti (de I If(- ur-se(d ol ()rai (io by~ se-cIi i g vlr- i oils

opeat i og Opt ions iiall a n ilerict lye lllller.

lles is (il imlil: lkii 1(W. (iiit er , Lt. Col., IiS;AI

OA1~Z~ - A

SUIM WMtUD.

I4

-. W." °

FILMED

5-85

DTIC

